Spaces:
Sleeping
Sleeping
File size: 1,900 Bytes
7ac4196 fbbadab 7ac4196 093f79d ab9eef9 fbbadab ab9eef9 fbbadab ab9eef9 fbbadab ab9eef9 fbbadab 093f79d ab9eef9 fbbadab ab9eef9 fbbadab ab9eef9 fbbadab ab9eef9 00b84bb 7ac4196 fbbadab ab9eef9 fbbadab 093f79d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import requests
from io import BytesIO
# Load the model and processor
repo_name = "cyan2k/molmo-7B-O-bnb-4bit"
arguments = {
"device_map": "auto", # Force CPU inference
"torch_dtype": "auto", # Set model to use float32 precision
"trust_remote_code": True # Allow the loading of remote code
}
# Load the processor and model
processor = AutoProcessor.from_pretrained(repo_name, **arguments)
model = AutoModelForCausalLM.from_pretrained(repo_name, **arguments)
def describe_image(image):
# Process the uploaded image
inputs = processor.process(
images=[image],
text="Describe this image in great detail without missing any piece of information"
)
# Move inputs to model device
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# Generate output
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer,
)
# Decode the generated tokens
generated_tokens = output[0, inputs["input_ids"].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
return generated_text
def gradio_app():
# Define Gradio interface
image_input = gr.Image(type="pil", label="Upload Image")
output_text = gr.Textbox(label="Image Description", interactive=False)
# Create Gradio interface
interface = gr.Interface(
fn=describe_image,
inputs=image_input,
outputs=output_text,
title="Image Description App",
description="Upload an image and get a detailed description using the Molmo 7B model"
)
# Launch the interface
interface.launch()
# Launch the Gradio app
gradio_app() |