Spaces:
Sleeping
Sleeping
change to GPU version
Browse files- README.md +1 -1
- app.py +11 -8
- requirements.txt +2 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💊
|
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: purple
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import cv2
|
@@ -113,6 +114,7 @@ def images_to_video(image_list, output_path, fps=10):
|
|
113 |
writer.close()
|
114 |
|
115 |
|
|
|
116 |
def NaRCan_make_video(edit_canonical, pth_path, frames_path):
|
117 |
# load NaRCan model
|
118 |
checkpoint_g_old = torch.load(os.path.join(pth_path, "homography_g.pth"))
|
@@ -190,6 +192,7 @@ def NaRCan_make_video(edit_canonical, pth_path, frames_path):
|
|
190 |
return edit_video_path
|
191 |
|
192 |
|
|
|
193 |
def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt, control_type="Lineart"):
|
194 |
video_name = input_video.split('/')[-1]
|
195 |
if video_name in video_to_image:
|
@@ -201,9 +204,9 @@ def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt
|
|
201 |
|
202 |
if control_type == "Lineart":
|
203 |
# Load the control net model for lineart
|
204 |
-
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart")
|
205 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
206 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet
|
207 |
)
|
208 |
pipe.to(device)
|
209 |
# lineart
|
@@ -228,9 +231,9 @@ def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt
|
|
228 |
|
229 |
else:
|
230 |
# Load the control net model for canny
|
231 |
-
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
|
232 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
233 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet
|
234 |
)
|
235 |
pipe.to(device)
|
236 |
# canny
|
@@ -285,10 +288,10 @@ with gr.Blocks(css="style.css") as demo:
|
|
285 |
do_inversion = gr.State(value=True)
|
286 |
|
287 |
with gr.Row():
|
288 |
-
input_video = gr.Video(label="Input Video", interactive=False, elem_id="input_video", value='examples/bear.mp4')
|
289 |
-
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
|
290 |
-
input_video.style(height=365, width=365)
|
291 |
-
output_video.style(height=365, width=365)
|
292 |
|
293 |
|
294 |
with gr.Row():
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import cv2
|
|
|
114 |
writer.close()
|
115 |
|
116 |
|
117 |
+
@spaces.GPU
|
118 |
def NaRCan_make_video(edit_canonical, pth_path, frames_path):
|
119 |
# load NaRCan model
|
120 |
checkpoint_g_old = torch.load(os.path.join(pth_path, "homography_g.pth"))
|
|
|
192 |
return edit_video_path
|
193 |
|
194 |
|
195 |
+
@spaces.GPU
|
196 |
def edit_with_pnp(input_video, prompt, num_steps, guidance_scale, seed, n_prompt, control_type="Lineart"):
|
197 |
video_name = input_video.split('/')[-1]
|
198 |
if video_name in video_to_image:
|
|
|
204 |
|
205 |
if control_type == "Lineart":
|
206 |
# Load the control net model for lineart
|
207 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart", torch_dtype=torch.float16)
|
208 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
209 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
210 |
)
|
211 |
pipe.to(device)
|
212 |
# lineart
|
|
|
231 |
|
232 |
else:
|
233 |
# Load the control net model for canny
|
234 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16)
|
235 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
236 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
237 |
)
|
238 |
pipe.to(device)
|
239 |
# canny
|
|
|
288 |
do_inversion = gr.State(value=True)
|
289 |
|
290 |
with gr.Row():
|
291 |
+
input_video = gr.Video(label="Input Video", interactive=False, elem_id="input_video", value='examples/bear.mp4', height=365, width=365)
|
292 |
+
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video", height=365, width=365)
|
293 |
+
# input_video.style(height=365, width=365)
|
294 |
+
# output_video.style(height=365, width=365)
|
295 |
|
296 |
|
297 |
with gr.Row():
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
gradio
|
2 |
numpy
|
|
|
3 |
torch==2.3.1
|
4 |
opencv-python==4.10.0.82
|
5 |
imageio==2.34.1
|
|
|
1 |
+
gradio
|
2 |
numpy
|
3 |
+
spaces
|
4 |
torch==2.3.1
|
5 |
opencv-python==4.10.0.82
|
6 |
imageio==2.34.1
|