Dataset stats: \ lat_mean = 39.951564548022596 \ lat_std = 0.0006361722351128644 \ lon_mean = -75.19150880602636 \ lon_std = 0.000611411894337979 The model can be loaded using: ``` from huggingface_hub import hf_hub_download import torch # Specify the repository and the filename of the model you want to load repo_id = "FinalProj5190/ImageToGPSproject-resnet_vit-base" # Replace with your repo name filename = "resnet_vit_gps_regressor_complete.pth" model_path = hf_hub_download(repo_id=repo_id, filename=filename) # Load the model using torch model_test = torch.load(model_path) model_test.eval() # Set the model to evaluation mode ``` The model implementation is here: ``` from transformers import ViTModel class HybridGPSModel(nn.Module): def __init__(self, num_classes=2): super(HybridGPSModel, self).__init__() # Pre-trained ResNet for feature extraction self.resnet = resnet18(pretrained=True) self.resnet.fc = nn.Identity() # Pre-trained Vision Transformer self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k') # Combined regression head self.regression_head = nn.Sequential( nn.Linear(512 + self.vit.config.hidden_size, 128), nn.ReLU(), nn.Linear(128, num_classes) ) def forward(self, x): resnet_features = self.resnet(x) vit_outputs = self.vit(pixel_values=x) vit_features = vit_outputs.last_hidden_state[:, 0, :] # CLS token combined_features = torch.cat((resnet_features, vit_features), dim=1) # Predict GPS coordinates gps_coordinates = self.regression_head(combined_features) return gps_coordinates ```