File size: 28,344 Bytes
6faeba1
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
 
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a79837
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# -*- coding: utf-8 -*-


import json
import logging
import re

import torch
from dragonmapper.transcriptions import pinyin_to_ipa
from phonemizer.backend import EspeakBackend
from pypinyin import pinyin

from Preprocessing.articulatory_features import generate_feature_table
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Preprocessing.articulatory_features import get_phone_to_id


def load_json_from_path(path):  # redundant to the one in utils, but necessary to avoid circular imports
    with open(path, "r", encoding="utf8") as f:
        obj = json.loads(f.read())

    return obj


class ArticulatoryCombinedTextFrontend:

    def __init__(self,
                 language,
                 use_explicit_eos=True,
                 use_lexical_stress=True,
                 silent=True,
                 add_silence_to_end=True,
                 use_word_boundaries=True,
                 device="cpu"):
        """
        Mostly preparing ID lookups
        """

        # this locks the device, so it has to happen here and not at the top
        from transphone.g2p import read_g2p

        self.language = language
        self.use_explicit_eos = use_explicit_eos
        self.use_stress = use_lexical_stress
        self.add_silence_to_end = add_silence_to_end
        self.use_word_boundaries = use_word_boundaries

        register_to_height = {
            "˥": 5,
            "˦": 4,
            "˧": 3,
            "˨": 2,
            "˩": 1
        }
        self.rising_perms = list()
        self.falling_perms = list()
        self.peaking_perms = list()
        self.dipping_perms = list()

        for first_tone in ["˥", "˦", "˧", "˨", "˩"]:
            for second_tone in ["˥", "˦", "˧", "˨", "˩"]:
                if register_to_height[first_tone] > register_to_height[second_tone]:
                    self.falling_perms.append(first_tone + second_tone)
                else:
                    self.rising_perms.append(first_tone + second_tone)
                for third_tone in ["˥", "˦", "˧", "˨", "˩"]:
                    if register_to_height[first_tone] > register_to_height[second_tone] < register_to_height[third_tone]:
                        self.dipping_perms.append(first_tone + second_tone + third_tone)
                    elif register_to_height[first_tone] < register_to_height[second_tone] > register_to_height[third_tone]:
                        self.peaking_perms.append(first_tone + second_tone + third_tone)

        if language == "eng" or language == "en-us":
            self.g2p_lang = "en-us"  # English as spoken in USA
            self.expand_abbreviations = english_text_expansion
            self.phonemizer = "espeak"

        else:
            # blanket solution for the rest
            print("Using Transphone. A specialized phonemizer might work better.")
            self.g2p_lang = language
            self.phonemizer = "transphone"
            self.expand_abbreviations = lambda x: x
            self.transphone = read_g2p(device=device)

        # remember to also update get_language_id() below when adding something here, as well as the get_example_sentence function

        if self.phonemizer == "espeak":
            try:
                self.phonemizer_backend = EspeakBackend(language=self.g2p_lang,
                                                        punctuation_marks=';:,.!?¡¿—…()"«»“”~/。【】、‥،؟“”؛',
                                                        preserve_punctuation=True,
                                                        language_switch='remove-flags',
                                                        with_stress=self.use_stress,
                                                        logger=logging.getLogger(__file__))
            except RuntimeError:
                print("Error in loading espeak! \n"
                      "Maybe espeak is not installed on your system? \n"
                      "Falling back to transphone.")
                from transphone.g2p import read_g2p
                self.g2p_lang = self.language
                self.phonemizer = "transphone"
                self.expand_abbreviations = lambda x: x
                self.transphone = read_g2p()
        self.phone_to_vector = generate_feature_table()
        self.phone_to_id = get_phone_to_id()
        self.id_to_phone = {v: k for k, v in self.phone_to_id.items()}
        self.text_vector_to_phone_cache = dict()

    @staticmethod
    def get_example_sentence(lang):
        if lang == "eng":
            return "This is a complex sentence, it even has a pause!"
        elif lang == "deu":
            return "Dies ist ein komplexer Satz, er hat sogar eine Pause!"
        elif lang == "ell":
            return "Αυτή είναι μια σύνθετη πρόταση, έχει ακόμη και παύση!"
        elif lang == "spa":
            return "Esta es una oración compleja, ¡incluso tiene una pausa!"
        elif lang == "fin":
            return "Tämä on monimutkainen lause, sillä on jopa tauko!"
        elif lang == "rus":
            return "Это сложное предложение, в нем даже есть пауза!"
        elif lang == "hun":
            return "Ez egy összetett mondat, még szünet is van benne!"
        elif lang == "nld":
            return "Dit is een complexe zin, er zit zelfs een pauze in!"
        elif lang == "fra":
            return "C'est une phrase complexe, elle a même une pause !"
        elif lang == "por":
            return "Esta é uma frase complexa, tem até uma pausa!"
        elif lang == "pol":
            return "To jest zdanie złożone, ma nawet pauzę!"
        elif lang == "ita":
            return "Questa è una frase complessa, ha anche una pausa!"
        elif lang == "cmn":
            return "这是一个复杂的句子,它甚至包含一个停顿。"
        elif lang == "vie":
            return "Đây là một câu phức tạp, nó thậm chí còn chứa một khoảng dừng."
        else:
            print(f"No example sentence specified for the language: {lang}\n "
                  f"Please specify an example sentence in the get_example_sentence function in Preprocessing/TextFrontend to track your progress.")
            return None

    def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False):
        """
        Fixes unicode errors, expands some abbreviations,
        turns graphemes into phonemes and then vectorizes
        the sequence as articulatory features
        """
        if input_phonemes:
            phones = text
        else:
            phones = self.get_phone_string(text=text, include_eos_symbol=True, for_feature_extraction=True)
        phones = phones.replace("ɚ", "ə").replace("ᵻ", "ɨ")
        if view:
            print("Phonemes: \n{}\n".format(phones))
        phones_vector = list()
        # turn into numeric vectors
        stressed_flag = False

        for char in phones:
            # affects following phoneme -----------------
            if char.strip() == '\u02C8':
                # primary stress
                stressed_flag = True
            # affects previous phoneme -----------------
            elif char.strip() == '\u02D0':
                # lengthened
                phones_vector[-1][get_feature_to_index_lookup()["lengthened"]] = 1
            elif char.strip() == '\u02D1':
                # half length
                phones_vector[-1][get_feature_to_index_lookup()["half-length"]] = 1
            elif char.strip() == '\u0306':
                # shortened
                phones_vector[-1][get_feature_to_index_lookup()["shortened"]] = 1
            elif char.strip() == '̃' and phones_vector[-1][get_feature_to_index_lookup()["nasal"]] != 1:
                # nasalized (vowel)
                phones_vector[-1][get_feature_to_index_lookup()["nasal"]] = 2
            elif char.strip() == "̧" != phones_vector[-1][get_feature_to_index_lookup()["palatal"]] != 1:
                # palatalized
                phones_vector[-1][get_feature_to_index_lookup()["palatal"]] = 2
            elif char.strip() == "ʷ" and phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] != 1:
                # labialized
                phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] = 2
            elif char.strip() == "ʰ" and phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] != 1:
                # aspirated
                phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] = 2
            elif char.strip() == "ˠ" and phones_vector[-1][get_feature_to_index_lookup()["velar"]] != 1:
                # velarized
                phones_vector[-1][get_feature_to_index_lookup()["velar"]] = 2
            elif char.strip() == "ˁ" and phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] != 1:
                # pharyngealized
                phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] = 2
            elif char.strip() == "ˀ" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1:
                # glottalized
                phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2
            elif char.strip() == "ʼ" and phones_vector[-1][get_feature_to_index_lookup()["ejective"]] != 1:
                # ejective
                phones_vector[-1][get_feature_to_index_lookup()["ejective"]] = 2
            elif char.strip() == "̹" and phones_vector[-1][get_feature_to_index_lookup()["rounded"]] != 1:
                # rounding
                phones_vector[-1][get_feature_to_index_lookup()["rounded"]] = 2
            elif char.strip() == "̞" and phones_vector[-1][get_feature_to_index_lookup()["open"]] != 1:
                # open
                phones_vector[-1][get_feature_to_index_lookup()["open"]] = 2
            elif char.strip() == "̪" and phones_vector[-1][get_feature_to_index_lookup()["dental"]] != 1:
                # dental
                phones_vector[-1][get_feature_to_index_lookup()["dental"]] = 2
            elif char.strip() == "̬" and phones_vector[-1][get_feature_to_index_lookup()["voiced"]] != 1:
                # voiced
                phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 2
            elif char.strip() == "̝" and phones_vector[-1][get_feature_to_index_lookup()["close"]] != 1:
                # closed
                phones_vector[-1][get_feature_to_index_lookup()["close"]] = 2
            elif char.strip() == "̰" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1 and phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] != 1:
                # laryngalization
                phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2
                phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] = 2
            elif char.strip() == "̈" and phones_vector[-1][get_feature_to_index_lookup()["central"]] != 1:
                # centralization
                phones_vector[-1][get_feature_to_index_lookup()["central"]] = 2
            elif char.strip() == "̜" and phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] != 1:
                # unrounded
                phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] = 2
            elif char.strip() == "̥" and phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] != 1:
                # voiceless
                phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 2
            elif char.strip() == "˥":
                # very high tone
                phones_vector[-1][get_feature_to_index_lookup()["very-high-tone"]] = 1
            elif char.strip() == "˦":
                # high tone
                phones_vector[-1][get_feature_to_index_lookup()["high-tone"]] = 1
            elif char.strip() == "˧":
                # mid tone
                phones_vector[-1][get_feature_to_index_lookup()["mid-tone"]] = 1
            elif char.strip() == "˨":
                # low tone
                phones_vector[-1][get_feature_to_index_lookup()["low-tone"]] = 1
            elif char.strip() == "˩":
                # very low tone
                phones_vector[-1][get_feature_to_index_lookup()["very-low-tone"]] = 1
            elif char.strip() == "⭧":
                # rising tone
                phones_vector[-1][get_feature_to_index_lookup()["rising-tone"]] = 1
            elif char.strip() == "⭨":
                # falling tone
                phones_vector[-1][get_feature_to_index_lookup()["falling-tone"]] = 1
            elif char.strip() == "⮁":
                # peaking tone
                phones_vector[-1][get_feature_to_index_lookup()["peaking-tone"]] = 1
            elif char.strip() == "⮃":
                # dipping tone
                phones_vector[-1][get_feature_to_index_lookup()["dipping-tone"]] = 1
            else:
                if handle_missing:
                    try:
                        phones_vector.append(self.phone_to_vector[char].copy())
                    except KeyError:
                        print("unknown phoneme: {}".format(char))
                else:
                    phones_vector.append(self.phone_to_vector[char].copy())  # leave error handling to elsewhere
                # the following lines try to emulate whispering by removing all voiced features
                # phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 0
                # phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 1
                # the following lines explore what would happen, if the system is told to produce sounds a human cannot
                # for dim, _ in enumerate(phones_vector[-1]):
                #     phones_vector[-1][dim] = 1
                if stressed_flag:
                    stressed_flag = False
                    phones_vector[-1][get_feature_to_index_lookup()["stressed"]] = 1

        return torch.Tensor(phones_vector, device=device)

    def get_phone_string(self, text, include_eos_symbol=True, for_feature_extraction=False, for_plot_labels=False):
        if text == "":
            return ""
        # expand abbreviations
        utt = self.expand_abbreviations(text)

        # convert the graphemes to phonemes here
        if self.phonemizer == "espeak":
            try:
                phones = self.phonemizer_backend.phonemize([utt], strip=True)[0]  # To use a different phonemizer, this is the only line that needs to be exchanged
            except:
                print(f"There was an error with espeak. \nFalling back to transphone.\nSentence: {utt} \nLanguage {self.g2p_lang}")
                from transphone.g2p import read_g2p
                self.g2p_lang = self.language
                self.phonemizer = "transphone"
                self.expand_abbreviations = lambda x: x
                self.transphone = read_g2p()
                return self.get_phone_string(text, include_eos_symbol, for_feature_extraction, for_plot_labels)
        elif self.phonemizer == "transphone":
            replacements = [
                # punctuation in languages with non-latin script
                ("。", "~"),
                (",", "~"),
                ("【", '~'),
                ("】", '~'),
                ("、", "~"),
                ("‥", "~"),
                ("؟", "~"),
                ("،", "~"),
                ("“", '~'),
                ("”", '~'),
                ("؛", "~"),
                ("《", '~'),
                ("》", '~'),
                ("?", "~"),
                ("!", "~"),
                (" :", "~"),
                (" ;", "~"),
                ("-", "~"),
                ("·", " "),
                ("`", ""),
                # symbols that indicate a pause or silence
                ('"', "~"),
                (" - ", "~ "),
                ("- ", "~ "),
                ("-", ""),
                ("…", "~"),
                (":", "~"),
                (";", "~"),
                (",", "~")  # make sure this remains the final one when adding new ones
            ]
            for replacement in replacements:
                utt = utt.replace(replacement[0], replacement[1])
            utt = re.sub("~+", "~", utt)
            utt = re.sub(r"\s+", " ", utt)
            utt = re.sub(r"\.+", ".", utt)
            chunk_list = list()
            for chunk in utt.split("~"):
                # unfortunately the transphone tokenizer is not suited for any languages besides English it seems
                # this is not much better, but maybe a little.
                word_list = list()
                for word_by_whitespace in chunk.split():
                    word_list.append(self.transphone.inference(word_by_whitespace, self.g2p_lang))
                chunk_list.append(" ".join(["".join(word) for word in word_list]))
            phones = "~ ".join(chunk_list)
        elif self.phonemizer == "dragonmapper":
            phones = pinyin_to_ipa(utt)

        # Unfortunately tonal languages don't agree on the tone, most tonal
        # languages use different tones denoted by different numbering
        # systems. At this point in the script, it is attempted to unify
        # them all to the tones in the IPA standard.
        if self.g2p_lang == "vi":
            phones = phones.replace('1', "˧")
            phones = phones.replace('2', "˨˩")
            phones = phones.replace('ɜ', "˧˥")  # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3
            phones = phones.replace('3', "˧˥")  # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3
            phones = phones.replace('4', "˦˧˥")
            phones = phones.replace('5', "˧˩˧")
            phones = phones.replace('6', "˧˩˨ʔ")  # very weird tone, because the tone introduces another phoneme
            phones = phones.replace('7', "˧")
        elif self.g2p_lang == "yue":
            phones = phones.replace('1', "˥")
            phones = phones.replace('2', "˧˥")
            phones = phones.replace('3', "˧")
            phones = phones.replace('4', "˧˩")
            phones = phones.replace('5', "˩˧")
            phones = phones.replace('6', "˨")
        # more of this handling for more tonal languages can be added here, simply make an elif statement and check for the language.
        return self.postprocess_phoneme_string(phones, for_feature_extraction, include_eos_symbol, for_plot_labels)

    def postprocess_phoneme_string(self, phoneme_string, for_feature_extraction, include_eos_symbol, for_plot_labels):
        """
        Takes as input a phoneme string and processes it to work best with the way we represent phonemes as featurevectors
        """
        replacements = [
            # punctuation in languages with non-latin script
            ("。", "."),
            (",", ","),
            ("【", '"'),
            ("】", '"'),
            ("、", ","),
            ("‥", "…"),
            ("؟", "?"),
            ("،", ","),
            ("“", '"'),
            ("”", '"'),
            ("؛", ","),
            ("《", '"'),
            ("》", '"'),
            ("?", "?"),
            ("!", "!"),
            (" :", ":"),
            (" ;", ";"),
            ("-", "-"),
            ("·", " "),
            # latin script punctuation
            ("/", " "),
            ("—", ""),
            ("(", "~"),
            (")", "~"),
            ("...", "…"),
            ("\n", ", "),
            ("\t", " "),
            ("¡", ""),
            ("¿", ""),
            ("«", '"'),
            ("»", '"'),
            # unifying some phoneme representations
            ("N", "ŋ"),  # somehow transphone doesn't transform this to IPA
            ("ɫ", "l"),  # alveolopalatal
            ("ɚ", "ə"),
            ("g", "ɡ"),
            ("ε", "e"),
            ("ʦ", "ts"),
            ("ˤ", "ˁ"),
            ('ᵻ', 'ɨ'),
            ("ɧ", "ç"),  # velopalatal
            ("ɥ", "j"),  # labiopalatal
            ("ɬ", "s"),  # lateral
            ("ɮ", "z"),  # lateral
            ('ɺ', 'ɾ'),  # lateral
            ('ʲ', 'j'),  # decomposed palatalization
            ('\u02CC', ""),  # secondary stress
            ('\u030B', "˥"),
            ('\u0301', "˦"),
            ('\u0304', "˧"),
            ('\u0300', "˨"),
            ('\u030F', "˩"),
            ('\u0302', "⭨"),
            ('\u030C', "⭧"),
            ("꜖", "˩"),
            ("꜕", "˨"),
            ("꜔", "˧"),
            ("꜓", "˦"),
            ("꜒", "˥"),
            # symbols that indicate a pause or silence
            ('"', "~"),
            (" - ", "~ "),
            ("- ", "~ "),
            ("-", ""),
            ("…", "."),
            (":", "~"),
            (";", "~"),
            (",", "~")  # make sure this remains the final one when adding new ones
        ]
        unsupported_ipa_characters = {'̙', '̯', '̤', '̩', '̠', '̟', 'ꜜ', '̽', '|', '•', '↘',
                                      '‖', '‿', 'ᷝ', 'ᷠ', '̚', '↗', 'ꜛ', '̻', '̘', '͡', '̺'}
        #  https://en.wikipedia.org/wiki/IPA_number
        for char in unsupported_ipa_characters:
            replacements.append((char, ""))

        if not for_feature_extraction:
            # in case we want to plot etc., we only need the segmental units, so we remove everything else.
            replacements = replacements + [
                ('\u02C8', ""),  # primary stress
                ('\u02D0', ""),  # lengthened
                ('\u02D1', ""),  # half-length
                ('\u0306', ""),  # shortened
                ("˥", ""),  # very high tone
                ("˦", ""),  # high tone
                ("˧", ""),  # mid tone
                ("˨", ""),  # low tone
                ("˩", ""),  # very low tone
                ('\u030C', ""),  # rising tone
                ('\u0302', ""),  # falling tone
                ('⭧', ""),  # rising
                ('⭨', ""),  # falling
                ('⮃', ""),  # dipping
                ('⮁', ""),  # peaking
                ('̃', ""),  # nasalizing
                ("̧", ""),  # palatalized
                ("ʷ", ""),  # labialized
                ("ʰ", ""),  # aspirated
                ("ˠ", ""),  # velarized
                ("ˁ", ""),  # pharyngealized
                ("ˀ", ""),  # glottalized
                ("ʼ", ""),  # ejective
                ("̹", ""),  # rounding
                ("̞", ""),  # open
                ("̪", ""),  # dental
                ("̬", ""),  # voiced
                ("̝", ""),  # closed
                ("̰", ""),  # laryngalization
                ("̈", ""),  # centralization
                ("̜", ""),  # unrounded
                ("̥", ""),  # voiceless
            ]
        for replacement in replacements:
            phoneme_string = phoneme_string.replace(replacement[0], replacement[1])
        phones = re.sub("~+", "~", phoneme_string)
        phones = re.sub(r"\s+", " ", phones)
        phones = re.sub(r"\.+", ".", phones)
        phones = phones.lstrip("~").rstrip("~")

        # peaking tones
        for peaking_perm in self.peaking_perms:
            phones = phones.replace(peaking_perm, "⮁".join(peaking_perm))
        # dipping tones
        for dipping_perm in self.dipping_perms:
            phones = phones.replace(dipping_perm, "⮃".join(dipping_perm))
        # rising tones
        for rising_perm in self.rising_perms:
            phones = phones.replace(rising_perm, "⭧".join(rising_perm))
        # falling tones
        for falling_perm in self.falling_perms:
            phones = phones.replace(falling_perm, "⭨".join(falling_perm))

        if self.add_silence_to_end:
            phones += "~"  # adding a silence in the end during inference produces more natural sounding prosody
        if include_eos_symbol:
            phones += "#"
        if not self.use_word_boundaries:
            phones = phones.replace(" ", "")
        if for_plot_labels:
            phones = phones.replace(" ", "|")

        phones = "~" + phones
        phones = re.sub("~+", "~", phones)

        return phones

    def text_vectors_to_id_sequence(self, text_vector):
        tokens = list()
        for vector in text_vector:
            if vector[get_feature_to_index_lookup()["word-boundary"]] == 0:
                # we don't include word boundaries when performing alignment, since they are not always present in audio.
                features = vector.cpu().numpy().tolist()
                immutable_vector = tuple(features)
                if immutable_vector in self.text_vector_to_phone_cache:
                    tokens.append(self.phone_to_id[self.text_vector_to_phone_cache[immutable_vector]])
                    continue
                features = features[13:]
                # the first 12 dimensions are for modifiers, so we ignore those when trying to find the phoneme in the ID lookup
                for index in range(len(features)):
                    if features[index] == 2:
                        # we remove all features that stem from a modifier, so we can map back to the unmodified sound
                        features[index] = 0
                for phone in self.phone_to_vector:
                    if features == self.phone_to_vector[phone][13:]:
                        tokens.append(self.phone_to_id[phone])
                        self.text_vector_to_phone_cache[immutable_vector] = phone
                        # this is terribly inefficient, but it's fine, since we're building a cache over time that makes this instant
                        break
        return tokens


def english_text_expansion(text):
    return text


def remove_french_spacing(text):
    text = text.replace(" »", '"').replace("« ", '"')
    for punc in ["!", ";", ":", ".", ",", "?", "-"]:
        text = text.replace(f" {punc}", punc)
    return text


def convert_kanji_to_pinyin_mandarin(text):
    return " ".join([x[0] for x in pinyin(text)])


def get_language_id(language):
    try:
        iso_codes_to_ids = load_json_from_path("Preprocessing/multilinguality/iso_lookup.json")[-1]
    except FileNotFoundError:
        try:
            iso_codes_to_ids = load_json_from_path("multilinguality/iso_lookup.json")[-1]
        except FileNotFoundError:
            iso_codes_to_ids = load_json_from_path("iso_lookup.json")[-1]
    if language not in iso_codes_to_ids:
        print("Please specify the language as ISO 639-3 code (https://en.wikipedia.org/wiki/List_of_ISO_639-3_codes)")
        return None
    return torch.LongTensor([iso_codes_to_ids[language]])


if __name__ == '__main__':
    print("\n\nEnglish Test")
    tf = ArticulatoryCombinedTextFrontend(language="eng")
    tf.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True)

    print("\n\nChinese Test")
    tf = ArticulatoryCombinedTextFrontend(language="cmn")
    tf.string_to_tensor("这是一个复杂的句子,它甚至包含一个停顿。", view=True)
    tf.string_to_tensor("李绅 《悯农》 锄禾日当午, 汗滴禾下土。 谁知盘中餐, 粒粒皆辛苦。", view=True)
    tf.string_to_tensor("巴 拔 把 爸 吧", view=True)

    print("\n\nVietnamese Test")
    tf = ArticulatoryCombinedTextFrontend(language="vie")
    tf.string_to_tensor("Xin chào thế giới, quả là một ngày tốt lành để học nói tiếng Việt!", view=True)
    tf.string_to_tensor("ba bà bá bạ bả bã", view=True)

    print("\n\nJapanese Test")
    tf = ArticulatoryCombinedTextFrontend(language="jpn")
    tf.string_to_tensor("医師会がなくても、近隣の病院なら紹介してくれると思います。", view=True)
    print(tf.get_phone_string("医師会がなくても、近隣の病院なら紹介してくれると思います。"))

    print("\n\nZero-Shot Test")
    tf = ArticulatoryCombinedTextFrontend(language="acr")
    tf.string_to_tensor("I don't know this language, but this is just a dummy text anyway.", view=True)
    print(tf.get_phone_string("I don't know this language, but this is just a dummy text anyway."))