File size: 8,894 Bytes
2045faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import math, os, re, sys
from pathlib import Path
import numpy as np
import pandas as pd
from multiprocessing import Pool
from scipy.io import wavfile
import tensorflow as tf
from pydub import AudioSegment
from tensorflow.keras.utils import Sequence, OrderedEnqueuer
from tensorflow.keras import layers
from tensorflow.keras.preprocessing.sequence import pad_sequences

sys.path.append(os.path.dirname(__file__))
from g2p.g2p_en.g2p import G2p

import warnings
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)

class GoogleCommandsDataloader(Sequence):
    def __init__(self, 
                 batch_size,
                 fs = 16000,
                 keyword=['realtek go','ok google','vintage','hackney','crocodile','surroundings','oversaw','northwestern'],
                 wav_path_or_object='/share/nas165/yiting/recording/ok_google/Default_20240725-183008.wav',
                 features='g2p_embed', # phoneme, g2p_embed, both ...
                 
                 ):
        
        phonemes = ["<pad>", ] + ['AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
                                    'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH', 
                                    'D', 'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1', 
                                    'EY2', 'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2', 
                                    'JH', 'K', 'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0', 
                                    'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH0', 'UH1', 
                                    'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH', 
                                    ' ']
        
        self.p2idx = {p: idx for idx, p in enumerate(phonemes)}
        self.idx2p = {idx: p for idx, p in enumerate(phonemes)}
        
        self.batch_size = batch_size
        self.fs = fs
        self.features = features
        self.nPhoneme = len(phonemes)
        self.g2p = G2p()
        self.keyword = keyword
        self.wav = wav_path_or_object  
        self.__prep__()
        self.on_epoch_end()
    
    def __prep__(self):
        self.data = pd.DataFrame(columns=['wav', 'text', 'duration', 'label'])
        anchor = ' '
        target_dict = {}
        if isinstance(self.wav, str):
            anchor  = self.wav.split('/')[-2].lower().replace('_', ' ')
            duration = float(wavfile.read(self.wav)[1].shape[-1])/self.fs
        else:
            duration = float(self.wav[1].shape[-1])/self.fs
        
        # duration = float(wavfile.read(self.wav)[1].shape[-1])/self.fs
        # duration = float(self.wav_path_or_object.shape[-1])/self.fs
        
        for i, comparison_text in enumerate(self.keyword):
            label = 1 if comparison_text == anchor else 0
            target_dict[i] = {
                'wav': self.wav,
                'text': comparison_text,
                'duration': duration,
                'label': label
            }
            
        print(target_dict)      
        self.data = self.data.append(pd.DataFrame.from_dict(target_dict, 'index'), ignore_index=True)
        print(self.data)
        # g2p & p2idx by g2p_en package
        print(">> Convert word to phoneme")
        self.data['phoneme'] = self.data['text'].apply(lambda x: self.g2p(re.sub(r"[^a-zA-Z0-9]+", ' ', x)))
        print(">> Convert phoneme to index")
        self.data['pIndex'] = self.data['phoneme'].apply(lambda x: [self.p2idx[t] for t in x])
        print(">> Compute phoneme embedding")
        self.data['g2p_embed'] = self.data['text'].apply(lambda x: self.g2p.embedding(x))
        
        # if (self.pkl is not None) and (not os.path.isfile(self.pkl)):
        #     self.data.to_pickle(self.pkl)


        # Get longest data
        self.wav_list = self.data['wav'].values
        self.idx_list = self.data['pIndex'].values
        # self.idx_list = [np.insert(lst, 0, 0) for lst in self.idx_list]
        # self.sIdx_list = [np.insert(lst, 0, 0) for lst in self.sIdx_list]
        self.emb_list = self.data['g2p_embed'].values
        self.lab_list = self.data['label'].values
        self.data = self.data.sort_values(by='duration').reset_index(drop=True)

        # Set dataloader params.
        self.len = len(self.data)
        self.maxlen_t = int((int(self.data['text'].apply(lambda x: len(x)).max() / 10) + 1) * 10)
        # self.maxlen_a = int(((int(self.data['duration'].values[-1] / 0.5) + 1 ) * self.fs / 2)*1.2)
        # print(self.maxlen_a)
        self.maxlen_a = 56000
    def __len__(self):
        # return total batch-wise length
        return math.ceil(self.len / self.batch_size)

    def _load_wav(self, wav):
        return np.array(wavfile.read(wav)[1]).astype(np.float32) / 32768.0
    
    def __getitem__(self, idx):
        # chunking
        indices = self.indices[idx * self.batch_size : (idx + 1) * self.batch_size]
        
        # load inputs
        if isinstance(self.wav, str):
            batch_x = [np.array(wavfile.read(self.wav_list[i])[1]).astype(np.float32) / 32768.0 for i in indices]
        else:
            batch_x = [np.array((self.wav_list[i])[1]).astype(np.float32)/ 32768.0 for i in indices]
        # batch_x = [np.array(wavfile.read(self.wav_list[i])[1]).astype(np.float32) / 32768.0 for i in indices]
        if self.features == 'both':
            batch_p = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
            batch_e = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
        else:
            if self.features == 'phoneme':
                batch_y = [np.array(self.idx_list[i]).astype(np.int32) for i in indices]
            elif self.features == 'g2p_embed':
                batch_y = [np.array(self.emb_list[i]).astype(np.float32) for i in indices]
        # load outputs
        batch_z = [np.array([self.lab_list[i]]).astype(np.float32) for i in indices]

        # padding and masking
        pad_batch_x = pad_sequences(np.array(batch_x), maxlen=self.maxlen_a, value=0.0, padding='post', dtype=batch_x[0].dtype)
        if self.features == 'both':
            pad_batch_p = pad_sequences(np.array(batch_p), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_p[0].dtype)
            pad_batch_e = pad_sequences(np.array(batch_e), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_e[0].dtype)
        else:
            pad_batch_y = pad_sequences(np.array(batch_y), maxlen=self.maxlen_t, value=0.0, padding='post', dtype=batch_y[0].dtype)
        pad_batch_z = pad_sequences(np.array(batch_z), value=0.0, padding='post', dtype=batch_z[0].dtype)

        if self.features == 'both':
            return pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
        else:
            return pad_batch_x, pad_batch_y, pad_batch_z

    def on_epoch_end(self):
        self.indices = np.arange(self.len)
        # if self.shuffle == True:
        #     np.random.shuffle(self.indices)

def convert_sequence_to_dataset(dataloader):
    def data_generator():
        for i in range(dataloader.__len__()):
            if dataloader.features == 'both':
                pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z = dataloader[i]
                yield pad_batch_x, pad_batch_p, pad_batch_e, pad_batch_z
            else:
                pad_batch_x, pad_batch_y, pad_batch_z = dataloader[i]
                yield pad_batch_x, pad_batch_y, pad_batch_z
    
    if dataloader.features == 'both':
        data_dataset =  tf.data.Dataset.from_generator(data_generator, output_signature=(
            tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
            tf.TensorSpec(shape=(None, dataloader.maxlen_t), dtype=tf.int32),
            tf.TensorSpec(shape=(None, dataloader.maxlen_t, 256), dtype=tf.float32),
            tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
        )
    else:
        data_dataset =  tf.data.Dataset.from_generator(data_generator, output_signature=(
            tf.TensorSpec(shape=(None, dataloader.maxlen_a), dtype=tf.float32),
            tf.TensorSpec(shape=(None, dataloader.maxlen_t) if dataloader.features == 'phoneme' else (None, dataloader.maxlen_t, 256),
                        dtype=tf.int32 if dataloader.features == 'phoneme' else tf.float32),
            tf.TensorSpec(shape=(None, 1), dtype=tf.float32),)
        )
    # data_dataset = data_dataset.cache()
    # data_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature)
    data_dataset = data_dataset.prefetch(1)
    
    return data_dataset

if __name__ == '__main__':
    dataloader = GoogleCommandsDataloader(2048, testset_only=True, pkl='/home/DB/google_speech_commands/google_testset.pkl', features='g2p_embed')