File size: 6,974 Bytes
2045faa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os, warnings, argparse
import tensorflow as tf
import numpy as np
from model import ukws
from dataset import dataloader_demo
import gradio as gr
# import librosa

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) 
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
warnings.simplefilter("ignore")

seed = 42
tf.random.set_seed(seed)
np.random.seed(seed)


parser = argparse.ArgumentParser()

parser.add_argument('--text_input', required=False, type=str, default='g2p_embed')
parser.add_argument('--audio_input', required=False, type=str, default='both')
parser.add_argument('--load_checkpoint_path', required=True, type=str)
parser.add_argument('--keyword_list_length', required=True, type=int)
parser.add_argument('--stack_extractor', action='store_true')
parser.add_argument('--comment', required=False, type=str)
args = parser.parse_args()

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
    except RuntimeError as e:
        print(e)

strategy = tf.distribute.MirroredStrategy()
batch_size = args.keyword_list_length
# Batch size per GPU
GLOBAL_BATCH_SIZE = batch_size * strategy.num_replicas_in_sync
# BATCH_SIZE_PER_REPLICA = GLOBAL_BATCH_SIZE / strategy.num_replicas_in_sync

# Make Dataloader
text_input = args.text_input
audio_input = args.audio_input
load_checkpoint_path = args.load_checkpoint_path

phonemes = ["<pad>", ] + ['AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
                                        'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH', 
                                        'D', 'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1', 
                                        'EY2', 'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2', 
                                        'JH', 'K', 'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0', 
                                        'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH0', 'UH1', 
                                        'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH', 
                                        ' ']
# Number of phonemes
vocab = len(phonemes)

# Model params.
kwargs = {
        'vocab' : vocab,
        'text_input' : text_input,
        'audio_input' : audio_input,
        'frame_length' : 400, 
        'hop_length' : 160, 
        'num_mel'  : 40, 
        'sample_rate' : 16000,
        'log_mel' : False,
        'stack_extractor' : args.stack_extractor,
    }



# Make tensorboard dict.
global keyword
param = kwargs
param['comment'] = args.comment


with strategy.scope():
    

    model = ukws.BaseUKWS(**kwargs)
    if args.load_checkpoint_path:
        checkpoint_dir=args.load_checkpoint_path
        checkpoint = tf.train.Checkpoint(model=model)
        checkpoint_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5)
        latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
        if latest_checkpoint:
            checkpoint.restore(latest_checkpoint)
            print("Checkpoint restored!")
        else:
            print("No checkpoint found.")
            
    def inference(audio,keyword):
        
        if isinstance(keyword, str):
            keyword = [kw.strip() for kw in keyword.split(',')]        
        
        test_google_dataset = dataloader_demo.GoogleCommandsDataloader(batch_size=GLOBAL_BATCH_SIZE, features=text_input, wav_path_or_object=audio, keyword = keyword)

        test_google_dataset = dataloader_demo.convert_sequence_to_dataset(test_google_dataset)

        test_google_dist_dataset = strategy.experimental_distribute_dataset(test_google_dataset)

        
        # @tf.function
        def test_step_metric_only(inputs,keyword_list):
            clean_speech = inputs[0]
            text = inputs[1]
            labels = inputs[2]
            prob, affinity_matrix = model(clean_speech, text, training=False)[:2]
            prob=tf.round(prob * 1000) / 1000
            prob = prob.numpy().flatten()
            max_indices = np.argmax(prob,axis=0)
            if prob[max_indices] >= 0.8:
                keyword = keyword_list[ max_indices]
            else :
                keyword = 'no keyword'
            
            print('keyword:',keyword_list)
            print('prob',prob)
            msg = ''
            for k, p in zip(keyword_list, prob):
                msg += '{} | {:.2f} \n'.format(k, p)

            return keyword, msg

        for x in test_google_dist_dataset:
            keyword, prob = test_step_metric_only(x,keyword)
        
         
        return keyword, prob

    # keyword = ['realtek go','ok google','vintage','hackney','crocodile','surroundings','oversaw','northwestern']
    # audio = '/share/nas165/yiting/recording/ok_google/Default_20240725-183000.wav'
    # inference(audio,keyword)
    
    demo = gr.Interface(
        fn=inference,
        inputs=[gr.Audio(source="upload", label="Sound"),
                gr.Textbox(placeholder="Keyword List Here...", label="keyword_list")],
        examples=[
        ["./recording/ok_google/ok_google-183000.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/ok_google/ok_google-183005.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/ok_google/ok_google-183008.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/ok_google/ok_google-183011.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/ok_google/ok_google-183015.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/realtek_go/realtek_go-183029.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/realtek_go/realtek_go-183033.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/realtek_go/realtek_go-183036.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/realtek_go/realtek_go-183039.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ["./recording/realtek_go/realtek_go-183043.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
        ],
        outputs=[gr.Textbox(label="keyword"), gr.Textbox(label="Confidence Score of keyword")],
        )

    demo.launch(server_name='0.0.0.0', server_port=7860,share=True)