Spaces:
Runtime error
Runtime error
File size: 6,974 Bytes
2045faa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os, warnings, argparse
import tensorflow as tf
import numpy as np
from model import ukws
from dataset import dataloader_demo
import gradio as gr
# import librosa
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
warnings.filterwarnings('ignore')
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
warnings.simplefilter("ignore")
seed = 42
tf.random.set_seed(seed)
np.random.seed(seed)
parser = argparse.ArgumentParser()
parser.add_argument('--text_input', required=False, type=str, default='g2p_embed')
parser.add_argument('--audio_input', required=False, type=str, default='both')
parser.add_argument('--load_checkpoint_path', required=True, type=str)
parser.add_argument('--keyword_list_length', required=True, type=int)
parser.add_argument('--stack_extractor', action='store_true')
parser.add_argument('--comment', required=False, type=str)
args = parser.parse_args()
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except RuntimeError as e:
print(e)
strategy = tf.distribute.MirroredStrategy()
batch_size = args.keyword_list_length
# Batch size per GPU
GLOBAL_BATCH_SIZE = batch_size * strategy.num_replicas_in_sync
# BATCH_SIZE_PER_REPLICA = GLOBAL_BATCH_SIZE / strategy.num_replicas_in_sync
# Make Dataloader
text_input = args.text_input
audio_input = args.audio_input
load_checkpoint_path = args.load_checkpoint_path
phonemes = ["<pad>", ] + ['AA0', 'AA1', 'AA2', 'AE0', 'AE1', 'AE2', 'AH0', 'AH1', 'AH2', 'AO0',
'AO1', 'AO2', 'AW0', 'AW1', 'AW2', 'AY0', 'AY1', 'AY2', 'B', 'CH',
'D', 'DH', 'EH0', 'EH1', 'EH2', 'ER0', 'ER1', 'ER2', 'EY0', 'EY1',
'EY2', 'F', 'G', 'HH', 'IH0', 'IH1', 'IH2', 'IY0', 'IY1', 'IY2',
'JH', 'K', 'L', 'M', 'N', 'NG', 'OW0', 'OW1', 'OW2', 'OY0',
'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH0', 'UH1',
'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH',
' ']
# Number of phonemes
vocab = len(phonemes)
# Model params.
kwargs = {
'vocab' : vocab,
'text_input' : text_input,
'audio_input' : audio_input,
'frame_length' : 400,
'hop_length' : 160,
'num_mel' : 40,
'sample_rate' : 16000,
'log_mel' : False,
'stack_extractor' : args.stack_extractor,
}
# Make tensorboard dict.
global keyword
param = kwargs
param['comment'] = args.comment
with strategy.scope():
model = ukws.BaseUKWS(**kwargs)
if args.load_checkpoint_path:
checkpoint_dir=args.load_checkpoint_path
checkpoint = tf.train.Checkpoint(model=model)
checkpoint_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5)
latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir)
if latest_checkpoint:
checkpoint.restore(latest_checkpoint)
print("Checkpoint restored!")
else:
print("No checkpoint found.")
def inference(audio,keyword):
if isinstance(keyword, str):
keyword = [kw.strip() for kw in keyword.split(',')]
test_google_dataset = dataloader_demo.GoogleCommandsDataloader(batch_size=GLOBAL_BATCH_SIZE, features=text_input, wav_path_or_object=audio, keyword = keyword)
test_google_dataset = dataloader_demo.convert_sequence_to_dataset(test_google_dataset)
test_google_dist_dataset = strategy.experimental_distribute_dataset(test_google_dataset)
# @tf.function
def test_step_metric_only(inputs,keyword_list):
clean_speech = inputs[0]
text = inputs[1]
labels = inputs[2]
prob, affinity_matrix = model(clean_speech, text, training=False)[:2]
prob=tf.round(prob * 1000) / 1000
prob = prob.numpy().flatten()
max_indices = np.argmax(prob,axis=0)
if prob[max_indices] >= 0.8:
keyword = keyword_list[ max_indices]
else :
keyword = 'no keyword'
print('keyword:',keyword_list)
print('prob',prob)
msg = ''
for k, p in zip(keyword_list, prob):
msg += '{} | {:.2f} \n'.format(k, p)
return keyword, msg
for x in test_google_dist_dataset:
keyword, prob = test_step_metric_only(x,keyword)
return keyword, prob
# keyword = ['realtek go','ok google','vintage','hackney','crocodile','surroundings','oversaw','northwestern']
# audio = '/share/nas165/yiting/recording/ok_google/Default_20240725-183000.wav'
# inference(audio,keyword)
demo = gr.Interface(
fn=inference,
inputs=[gr.Audio(source="upload", label="Sound"),
gr.Textbox(placeholder="Keyword List Here...", label="keyword_list")],
examples=[
["./recording/ok_google/ok_google-183000.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/ok_google/ok_google-183005.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/ok_google/ok_google-183008.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/ok_google/ok_google-183011.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/ok_google/ok_google-183015.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/realtek_go/realtek_go-183029.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/realtek_go/realtek_go-183033.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/realtek_go/realtek_go-183036.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/realtek_go/realtek_go-183039.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
["./recording/realtek_go/realtek_go-183043.wav", 'realtek go,ok google,vintage,hackney,crocodile,surroundings,oversaw,northwestern'],
],
outputs=[gr.Textbox(label="keyword"), gr.Textbox(label="Confidence Score of keyword")],
)
demo.launch(server_name='0.0.0.0', server_port=7860,share=True)
|