File size: 6,592 Bytes
24c345c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
from torch.utils.data import Dataset
import torch
import random
import cv2
from ..utils.image_processor import ImageProcessor, load_fixed_mask
from ..utils.audio import melspectrogram
from decord import AudioReader, VideoReader, cpu


class UNetDataset(Dataset):
    def __init__(self, train_data_dir: str, config):
        if config.data.train_fileslist != "":
            with open(config.data.train_fileslist) as file:
                self.video_paths = [line.rstrip() for line in file]
        elif train_data_dir != "":
            self.video_paths = []
            for file in os.listdir(train_data_dir):
                if file.endswith(".mp4"):
                    self.video_paths.append(os.path.join(train_data_dir, file))
        else:
            raise ValueError("data_dir and fileslist cannot be both empty")

        self.resolution = config.data.resolution
        self.num_frames = config.data.num_frames

        if self.num_frames == 16:
            self.mel_window_length = 52
        elif self.num_frames == 5:
            self.mel_window_length = 16
        else:
            raise NotImplementedError("Only support 16 and 5 frames now")

        self.audio_sample_rate = config.data.audio_sample_rate
        self.video_fps = config.data.video_fps
        self.mask = config.data.mask
        self.mask_image = load_fixed_mask(self.resolution)
        self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
        self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
        os.makedirs(self.audio_mel_cache_dir, exist_ok=True)

    def __len__(self):
        return len(self.video_paths)

    def read_audio(self, video_path: str):
        ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
        original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
        return torch.from_numpy(original_mel)

    def crop_audio_window(self, original_mel, start_index):
        start_idx = int(80.0 * (start_index / float(self.video_fps)))
        end_idx = start_idx + self.mel_window_length
        return original_mel[:, start_idx:end_idx].unsqueeze(0)

    def get_frames(self, video_reader: VideoReader):
        total_num_frames = len(video_reader)

        start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2)
        frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)

        while True:
            wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
            if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames:
                continue
            wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
            break

        frames = video_reader.get_batch(frames_index).asnumpy()
        wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()

        return frames, wrong_frames, start_idx

    def worker_init_fn(self, worker_id):
        # Initialize the face mesh object in each worker process,
        # because the face mesh object cannot be called in subprocesses
        self.worker_id = worker_id
        setattr(
            self,
            f"image_processor_{worker_id}",
            ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image),
        )

    def __getitem__(self, idx):
        image_processor = getattr(self, f"image_processor_{self.worker_id}")
        while True:
            try:
                idx = random.randint(0, len(self) - 1)

                # Get video file path
                video_path = self.video_paths[idx]

                vr = VideoReader(video_path, ctx=cpu(self.worker_id))

                if len(vr) < 3 * self.num_frames:
                    continue

                continuous_frames, ref_frames, start_idx = self.get_frames(vr)

                if self.load_audio_data:
                    mel_cache_path = os.path.join(
                        self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
                    )

                    if os.path.isfile(mel_cache_path):
                        try:
                            original_mel = torch.load(mel_cache_path)
                        except Exception as e:
                            print(f"{type(e).__name__} - {e} - {mel_cache_path}")
                            os.remove(mel_cache_path)
                            original_mel = self.read_audio(video_path)
                            torch.save(original_mel, mel_cache_path)
                    else:
                        original_mel = self.read_audio(video_path)
                        torch.save(original_mel, mel_cache_path)

                    mel = self.crop_audio_window(original_mel, start_idx)

                    if mel.shape[-1] != self.mel_window_length:
                        continue
                else:
                    mel = []

                gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images(
                    continuous_frames, affine_transform=False
                )

                if self.mask == "fix_mask":
                    ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False)
                else:
                    ref = image_processor.process_images(ref_frames)
                vr.seek(0)  # avoid memory leak
                break

            except Exception as e:  # Handle the exception of face not detcted
                print(f"{type(e).__name__} - {e} - {video_path}")
                if "vr" in locals():
                    vr.seek(0)  # avoid memory leak

        sample = dict(
            gt=gt,
            masked_gt=masked_gt,
            ref=ref,
            mel=mel,
            mask=mask,
            video_path=video_path,
            start_idx=start_idx,
        )

        return sample