File size: 6,004 Bytes
24c345c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Adapted from https://github.com/Rudrabha/Wav2Lip/blob/master/audio.py

import librosa
import librosa.filters
import numpy as np
from scipy import signal
from scipy.io import wavfile
from omegaconf import OmegaConf
import torch

audio_config_path = "configs/audio.yaml"

config = OmegaConf.load(audio_config_path)


def load_wav(path, sr):
    return librosa.core.load(path, sr=sr)[0]


def save_wav(wav, path, sr):
    wav *= 32767 / max(0.01, np.max(np.abs(wav)))
    # proposed by @dsmiller
    wavfile.write(path, sr, wav.astype(np.int16))


def save_wavenet_wav(wav, path, sr):
    librosa.output.write_wav(path, wav, sr=sr)


def preemphasis(wav, k, preemphasize=True):
    if preemphasize:
        return signal.lfilter([1, -k], [1], wav)
    return wav


def inv_preemphasis(wav, k, inv_preemphasize=True):
    if inv_preemphasize:
        return signal.lfilter([1], [1, -k], wav)
    return wav


def get_hop_size():
    hop_size = config.audio.hop_size
    if hop_size is None:
        assert config.audio.frame_shift_ms is not None
        hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate)
    return hop_size


def linearspectrogram(wav):
    D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
    S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db

    if config.audio.signal_normalization:
        return _normalize(S)
    return S


def melspectrogram(wav):
    D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize))
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db

    if config.audio.signal_normalization:
        return _normalize(S)
    return S


def _lws_processor():
    import lws

    return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech")


def _stft(y):
    if config.audio.use_lws:
        return _lws_processor(config.audio).stft(y).T
    else:
        return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size)


##########################################################
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
    """Compute number of time frames of spectrogram"""
    pad = fsize - fshift
    if length % fshift == 0:
        M = (length + pad * 2 - fsize) // fshift + 1
    else:
        M = (length + pad * 2 - fsize) // fshift + 2
    return M


def pad_lr(x, fsize, fshift):
    """Compute left and right padding"""
    M = num_frames(len(x), fsize, fshift)
    pad = fsize - fshift
    T = len(x) + 2 * pad
    r = (M - 1) * fshift + fsize - T
    return pad, pad + r


##########################################################
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
    return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]


# Conversions
_mel_basis = None


def _linear_to_mel(spectogram):
    global _mel_basis
    if _mel_basis is None:
        _mel_basis = _build_mel_basis()
    return np.dot(_mel_basis, spectogram)


def _build_mel_basis():
    assert config.audio.fmax <= config.audio.sample_rate // 2
    return librosa.filters.mel(
        sr=config.audio.sample_rate,
        n_fft=config.audio.n_fft,
        n_mels=config.audio.num_mels,
        fmin=config.audio.fmin,
        fmax=config.audio.fmax,
    )


def _amp_to_db(x):
    min_level = np.exp(config.audio.min_level_db / 20 * np.log(10))
    return 20 * np.log10(np.maximum(min_level, x))


def _db_to_amp(x):
    return np.power(10.0, (x) * 0.05)


def _normalize(S):
    if config.audio.allow_clipping_in_normalization:
        if config.audio.symmetric_mels:
            return np.clip(
                (2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))
                - config.audio.max_abs_value,
                -config.audio.max_abs_value,
                config.audio.max_abs_value,
            )
        else:
            return np.clip(
                config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)),
                0,
                config.audio.max_abs_value,
            )

    assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0
    if config.audio.symmetric_mels:
        return (2 * config.audio.max_abs_value) * (
            (S - config.audio.min_level_db) / (-config.audio.min_level_db)
        ) - config.audio.max_abs_value
    else:
        return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db))


def _denormalize(D):
    if config.audio.allow_clipping_in_normalization:
        if config.audio.symmetric_mels:
            return (
                (np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value)
                * -config.audio.min_level_db
                / (2 * config.audio.max_abs_value)
            ) + config.audio.min_level_db
        else:
            return (
                np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value
            ) + config.audio.min_level_db

    if config.audio.symmetric_mels:
        return (
            (D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value)
        ) + config.audio.min_level_db
    else:
        return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db


def get_melspec_overlap(audio_samples, melspec_length=52):
    mel_spec_overlap = melspectrogram(audio_samples.numpy())
    mel_spec_overlap = torch.from_numpy(mel_spec_overlap)
    i = 0
    mel_spec_overlap_list = []
    while i + melspec_length < mel_spec_overlap.shape[1] - 3:
        mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0))
        i += 3
    mel_spec_overlap = torch.stack(mel_spec_overlap_list)
    return mel_spec_overlap