Spaces:
Running
Running
File size: 13,390 Bytes
5d63776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from tqdm.auto import tqdm
import os, argparse, datetime, math
import logging
from omegaconf import OmegaConf
import shutil
from latentsync.data.syncnet_dataset import SyncNetDataset
from latentsync.models.syncnet import SyncNet
from latentsync.models.syncnet_wav2lip import SyncNetWav2Lip
from latentsync.utils.util import gather_loss, plot_loss_chart
from accelerate.utils import set_seed
import torch
from diffusers import AutoencoderKL
from diffusers.utils.logging import get_logger
from einops import rearrange
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from latentsync.utils.util import init_dist, cosine_loss
logger = get_logger(__name__)
def main(config):
# Initialize distributed training
local_rank = init_dist()
global_rank = dist.get_rank()
num_processes = dist.get_world_size()
is_main_process = global_rank == 0
seed = config.run.seed + global_rank
set_seed(seed)
# Logging folder
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S")
output_dir = os.path.join(config.data.train_output_dir, folder_name)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Handle the output folder creation
if is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True)
shutil.copy(config.config_path, output_dir)
device = torch.device(local_rank)
if config.data.latent_space:
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
vae.requires_grad_(False)
vae.to(device)
else:
vae = None
# Dataset and Dataloader setup
train_dataset = SyncNetDataset(config.data.train_data_dir, config.data.train_fileslist, config)
val_dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
train_distributed_sampler = DistributedSampler(
train_dataset,
num_replicas=num_processes,
rank=global_rank,
shuffle=True,
seed=config.run.seed,
)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config.data.batch_size,
shuffle=False,
sampler=train_distributed_sampler,
num_workers=config.data.num_workers,
pin_memory=False,
drop_last=True,
worker_init_fn=train_dataset.worker_init_fn,
)
num_samples_limit = 640
val_batch_size = min(
num_samples_limit // config.data.num_frames, config.data.batch_size
) # limit batch size to avoid CUDA OOM
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=val_batch_size,
shuffle=False,
num_workers=config.data.num_workers,
pin_memory=False,
drop_last=False,
worker_init_fn=val_dataset.worker_init_fn,
)
# Model
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
# syncnet = SyncNetWav2Lip().to(device)
optimizer = torch.optim.AdamW(
list(filter(lambda p: p.requires_grad, syncnet.parameters())), lr=config.optimizer.lr
)
if config.ckpt.resume_ckpt_path != "":
if is_main_process:
logger.info(f"Load checkpoint from: {config.ckpt.resume_ckpt_path}")
ckpt = torch.load(config.ckpt.resume_ckpt_path, map_location=device)
syncnet.load_state_dict(ckpt["state_dict"])
global_step = ckpt["global_step"]
train_step_list = ckpt["train_step_list"]
train_loss_list = ckpt["train_loss_list"]
val_step_list = ckpt["val_step_list"]
val_loss_list = ckpt["val_loss_list"]
else:
global_step = 0
train_step_list = []
train_loss_list = []
val_step_list = []
val_loss_list = []
# DDP wrapper
syncnet = DDP(syncnet, device_ids=[local_rank], output_device=local_rank)
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch)
# validation_steps = int(config.ckpt.save_ckpt_steps // 5)
# validation_steps = 100
if is_main_process:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {config.data.batch_size * num_processes}")
logger.info(f" Total optimization steps = {config.run.max_train_steps}")
first_epoch = global_step // num_update_steps_per_epoch
num_val_batches = config.data.num_val_samples // (num_processes * config.data.batch_size)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(0, config.run.max_train_steps), initial=global_step, desc="Steps", disable=not is_main_process
)
# Support mixed-precision training
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None
for epoch in range(first_epoch, num_train_epochs):
train_dataloader.sampler.set_epoch(epoch)
syncnet.train()
for step, batch in enumerate(train_dataloader):
### >>>> Training >>>> ###
frames = batch["frames"].to(device, dtype=torch.float16)
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
y = batch["y"].to(device, dtype=torch.float32)
if config.data.latent_space:
max_batch_size = (
num_samples_limit // config.data.num_frames
) # due to the limited cuda memory, we split the input frames into parts
if frames.shape[0] > max_batch_size:
assert (
frames.shape[0] % max_batch_size == 0
), f"max_batch_size {max_batch_size} should be divisible by batch_size {frames.shape[0]}"
frames_part_results = []
for i in range(0, frames.shape[0], max_batch_size):
frames_part = frames[i : i + max_batch_size]
frames_part = rearrange(frames_part, "b f c h w -> (b f) c h w")
with torch.no_grad():
frames_part = vae.encode(frames_part).latent_dist.sample() * 0.18215
frames_part_results.append(frames_part)
frames = torch.cat(frames_part_results, dim=0)
else:
frames = rearrange(frames, "b f c h w -> (b f) c h w")
with torch.no_grad():
frames = vae.encode(frames).latent_dist.sample() * 0.18215
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
else:
frames = rearrange(frames, "b f c h w -> b (f c) h w")
if config.data.lower_half:
height = frames.shape[2]
frames = frames[:, :, height // 2 :, :]
# audio_embeds = wav2vec_encoder(audio_samples).last_hidden_state
# Mixed-precision training
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training):
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
optimizer.zero_grad()
# Backpropagate
if config.run.mixed_precision_training:
scaler.scale(loss).backward()
""" >>> gradient clipping >>> """
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
""" <<< gradient clipping <<< """
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
""" >>> gradient clipping >>> """
torch.nn.utils.clip_grad_norm_(syncnet.parameters(), config.optimizer.max_grad_norm)
""" <<< gradient clipping <<< """
optimizer.step()
progress_bar.update(1)
global_step += 1
global_average_loss = gather_loss(loss, device)
train_step_list.append(global_step)
train_loss_list.append(global_average_loss)
if is_main_process and global_step % config.run.validation_steps == 0:
logger.info(f"Validation at step {global_step}")
val_loss = validation(
val_dataloader,
device,
syncnet,
cosine_loss,
config.data.latent_space,
config.data.lower_half,
vae,
num_val_batches,
)
val_step_list.append(global_step)
val_loss_list.append(val_loss)
logger.info(f"Validation loss at step {global_step} is {val_loss:0.3f}")
if is_main_process and global_step % config.ckpt.save_ckpt_steps == 0:
checkpoint_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt")
torch.save(
{
"state_dict": syncnet.module.state_dict(), # to unwrap DDP
"global_step": global_step,
"train_step_list": train_step_list,
"train_loss_list": train_loss_list,
"val_step_list": val_step_list,
"val_loss_list": val_loss_list,
},
checkpoint_save_path,
)
logger.info(f"Saved checkpoint to {checkpoint_save_path}")
plot_loss_chart(
os.path.join(output_dir, f"loss_charts/loss_chart-{global_step}.png"),
("Train loss", train_step_list, train_loss_list),
("Val loss", val_step_list, val_loss_list),
)
progress_bar.set_postfix({"step_loss": global_average_loss})
if global_step >= config.run.max_train_steps:
break
progress_bar.close()
dist.destroy_process_group()
@torch.no_grad()
def validation(val_dataloader, device, syncnet, cosine_loss, latent_space, lower_half, vae, num_val_batches):
syncnet.eval()
losses = []
val_step = 0
while True:
for step, batch in enumerate(val_dataloader):
### >>>> Validation >>>> ###
frames = batch["frames"].to(device, dtype=torch.float16)
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
y = batch["y"].to(device, dtype=torch.float32)
if latent_space:
num_frames = frames.shape[1]
frames = rearrange(frames, "b f c h w -> (b f) c h w")
frames = vae.encode(frames).latent_dist.sample() * 0.18215
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=num_frames)
else:
frames = rearrange(frames, "b f c h w -> b (f c) h w")
if lower_half:
height = frames.shape[2]
frames = frames[:, :, height // 2 :, :]
with torch.autocast(device_type="cuda", dtype=torch.float16):
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), y).mean()
losses.append(loss.item())
val_step += 1
if val_step > num_val_batches:
syncnet.train()
if len(losses) == 0:
raise RuntimeError("No validation data")
return sum(losses) / len(losses)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Code to train the expert lip-sync discriminator")
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_vae.yaml")
args = parser.parse_args()
# Load a configuration file
config = OmegaConf.load(args.config_path)
config.config_path = args.config_path
main(config)
|