Spaces:
Sleeping
Sleeping
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import numpy as np | |
from torch.utils.data import Dataset | |
import torch | |
import random | |
from ..utils.util import gather_video_paths_recursively | |
from ..utils.image_processor import ImageProcessor | |
from ..utils.audio import melspectrogram | |
import math | |
from decord import AudioReader, VideoReader, cpu | |
class SyncNetDataset(Dataset): | |
def __init__(self, data_dir: str, fileslist: str, config): | |
if fileslist != "": | |
with open(fileslist) as file: | |
self.video_paths = [line.rstrip() for line in file] | |
elif data_dir != "": | |
self.video_paths = gather_video_paths_recursively(data_dir) | |
else: | |
raise ValueError("data_dir and fileslist cannot be both empty") | |
self.resolution = config.data.resolution | |
self.num_frames = config.data.num_frames | |
self.mel_window_length = math.ceil(self.num_frames / 5 * 16) | |
self.audio_sample_rate = config.data.audio_sample_rate | |
self.video_fps = config.data.video_fps | |
self.audio_samples_length = int( | |
config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames | |
) | |
self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half") | |
self.audio_mel_cache_dir = config.data.audio_mel_cache_dir | |
os.makedirs(self.audio_mel_cache_dir, exist_ok=True) | |
def __len__(self): | |
return len(self.video_paths) | |
def read_audio(self, video_path: str): | |
ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate) | |
original_mel = melspectrogram(ar[:].asnumpy().squeeze(0)) | |
return torch.from_numpy(original_mel) | |
def crop_audio_window(self, original_mel, start_index): | |
start_idx = int(80.0 * (start_index / float(self.video_fps))) | |
end_idx = start_idx + self.mel_window_length | |
return original_mel[:, start_idx:end_idx].unsqueeze(0) | |
def get_frames(self, video_reader: VideoReader): | |
total_num_frames = len(video_reader) | |
start_idx = random.randint(0, total_num_frames - self.num_frames) | |
frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int) | |
while True: | |
wrong_start_idx = random.randint(0, total_num_frames - self.num_frames) | |
# wrong_start_idx = random.randint( | |
# max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25) | |
# ) | |
if wrong_start_idx == start_idx: | |
continue | |
# if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames: | |
# continue | |
wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int) | |
break | |
frames = video_reader.get_batch(frames_index).asnumpy() | |
wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy() | |
return frames, wrong_frames, start_idx | |
def worker_init_fn(self, worker_id): | |
# Initialize the face mesh object in each worker process, | |
# because the face mesh object cannot be called in subprocesses | |
self.worker_id = worker_id | |
# setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask)) | |
def __getitem__(self, idx): | |
# image_processor = getattr(self, f"image_processor_{self.worker_id}") | |
while True: | |
try: | |
idx = random.randint(0, len(self) - 1) | |
# Get video file path | |
video_path = self.video_paths[idx] | |
vr = VideoReader(video_path, ctx=cpu(self.worker_id)) | |
if len(vr) < 2 * self.num_frames: | |
continue | |
frames, wrong_frames, start_idx = self.get_frames(vr) | |
mel_cache_path = os.path.join( | |
self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt") | |
) | |
if os.path.isfile(mel_cache_path): | |
try: | |
original_mel = torch.load(mel_cache_path) | |
except Exception as e: | |
print(f"{type(e).__name__} - {e} - {mel_cache_path}") | |
os.remove(mel_cache_path) | |
original_mel = self.read_audio(video_path) | |
torch.save(original_mel, mel_cache_path) | |
else: | |
original_mel = self.read_audio(video_path) | |
torch.save(original_mel, mel_cache_path) | |
mel = self.crop_audio_window(original_mel, start_idx) | |
if mel.shape[-1] != self.mel_window_length: | |
continue | |
if random.choice([True, False]): | |
y = torch.ones(1).float() | |
chosen_frames = frames | |
else: | |
y = torch.zeros(1).float() | |
chosen_frames = wrong_frames | |
chosen_frames = self.image_processor.process_images(chosen_frames) | |
# chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images( | |
# chosen_frames, affine_transform=True | |
# ) | |
vr.seek(0) # avoid memory leak | |
break | |
except Exception as e: # Handle the exception of face not detcted | |
print(f"{type(e).__name__} - {e} - {video_path}") | |
if "vr" in locals(): | |
vr.seek(0) # avoid memory leak | |
sample = dict(frames=chosen_frames, audio_samples=mel, y=y) | |
return sample | |