Spaces:
Running
Running
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
class InflatedConv3d(nn.Conv2d): | |
def forward(self, x): | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class InflatedGroupNorm(nn.GroupNorm): | |
def forward(self, x): | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class Upsample3D(nn.Module): | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
raise NotImplementedError | |
elif use_conv: | |
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
raise NotImplementedError | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# if self.use_conv: | |
# if self.name == "conv": | |
# hidden_states = self.conv(hidden_states) | |
# else: | |
# hidden_states = self.Conv2d_0(hidden_states) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class Downsample3D(nn.Module): | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
raise NotImplementedError | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
raise NotImplementedError | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
use_inflated_groupnorm=False, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.time_embedding_norm = time_embedding_norm | |
self.output_scale_factor = output_scale_factor | |
if groups_out is None: | |
groups_out = groups | |
assert use_inflated_groupnorm != None | |
if use_inflated_groupnorm: | |
self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
else: | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
time_emb_proj_out_channels = out_channels | |
# if self.time_embedding_norm == "default": | |
# time_emb_proj_out_channels = out_channels | |
# elif self.time_embedding_norm == "scale_shift": | |
# time_emb_proj_out_channels = out_channels * 2 | |
# else: | |
# raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) | |
else: | |
self.time_emb_proj = None | |
if self.time_embedding_norm == "scale_shift": | |
self.double_len_linear = torch.nn.Linear(time_emb_proj_out_channels, 2 * time_emb_proj_out_channels) | |
else: | |
self.double_len_linear = None | |
if use_inflated_groupnorm: | |
self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
else: | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
if temb.dim() == 2: | |
# input (1, 1280) | |
temb = self.time_emb_proj(self.nonlinearity(temb)) | |
temb = temb[:, :, None, None, None] # unsqueeze | |
else: | |
# input (1, 1280, 16) | |
temb = temb.permute(0, 2, 1) | |
temb = self.time_emb_proj(self.nonlinearity(temb)) | |
if self.double_len_linear is not None: | |
temb = self.double_len_linear(self.nonlinearity(temb)) | |
temb = temb.permute(0, 2, 1) | |
temb = temb[:, :, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class Mish(torch.nn.Module): | |
def forward(self, hidden_states): | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |