Francke's picture
t
24c345c
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
from einops import rearrange
from torch.nn import functional as F
from ..utils.util import cosine_loss
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.attention import CrossAttention, FeedForward
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
class SyncNet(nn.Module):
def __init__(self, config):
super().__init__()
self.audio_encoder = DownEncoder2D(
in_channels=config["audio_encoder"]["in_channels"],
block_out_channels=config["audio_encoder"]["block_out_channels"],
downsample_factors=config["audio_encoder"]["downsample_factors"],
dropout=config["audio_encoder"]["dropout"],
attn_blocks=config["audio_encoder"]["attn_blocks"],
)
self.visual_encoder = DownEncoder2D(
in_channels=config["visual_encoder"]["in_channels"],
block_out_channels=config["visual_encoder"]["block_out_channels"],
downsample_factors=config["visual_encoder"]["downsample_factors"],
dropout=config["visual_encoder"]["dropout"],
attn_blocks=config["visual_encoder"]["attn_blocks"],
)
self.eval()
def forward(self, image_sequences, audio_sequences):
vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
# Make them unit vectors
vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
return vision_embeds, audio_embeds
class ResnetBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
norm_num_groups: int = 32,
eps: float = 1e-6,
act_fn: str = "silu",
downsample_factor=2,
):
super().__init__()
self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if act_fn == "relu":
self.act_fn = nn.ReLU()
elif act_fn == "silu":
self.act_fn = nn.SiLU()
if in_channels != out_channels:
self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
else:
self.conv_shortcut = None
if isinstance(downsample_factor, list):
downsample_factor = tuple(downsample_factor)
if downsample_factor == 1:
self.downsample_conv = None
else:
self.downsample_conv = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
)
self.pad = (0, 1, 0, 1)
if isinstance(downsample_factor, tuple):
if downsample_factor[0] == 1:
self.pad = (0, 1, 1, 1) # The padding order is from back to front
elif downsample_factor[1] == 1:
self.pad = (1, 1, 0, 1)
def forward(self, input_tensor):
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
hidden_states += input_tensor
if self.downsample_conv is not None:
hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
hidden_states = self.downsample_conv(hidden_states)
return hidden_states
class AttentionBlock2D(nn.Module):
def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
super().__init__()
if not is_xformers_available():
raise ModuleNotFoundError(
"You have to install xformers to enable memory efficient attetion", name="xformers"
)
# inner_dim = dim_head * heads
self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
self.norm2 = nn.LayerNorm(query_dim)
self.norm3 = nn.LayerNorm(query_dim)
self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")
self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
self.attn._use_memory_efficient_attention_xformers = True
def forward(self, hidden_states):
assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.conv_in(hidden_states)
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
norm_hidden_states = self.norm2(hidden_states)
hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class DownEncoder2D(nn.Module):
def __init__(
self,
in_channels=4 * 16,
block_out_channels=[64, 128, 256, 256],
downsample_factors=[2, 2, 2, 2],
layers_per_block=2,
norm_num_groups=32,
attn_blocks=[1, 1, 1, 1],
dropout: float = 0.0,
act_fn="silu",
):
super().__init__()
self.layers_per_block = layers_per_block
# in
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
# down
self.down_blocks = nn.ModuleList([])
output_channels = block_out_channels[0]
for i, block_out_channel in enumerate(block_out_channels):
input_channels = output_channels
output_channels = block_out_channel
# is_final_block = i == len(block_out_channels) - 1
down_block = ResnetBlock2D(
in_channels=input_channels,
out_channels=output_channels,
downsample_factor=downsample_factors[i],
norm_num_groups=norm_num_groups,
dropout=dropout,
act_fn=act_fn,
)
self.down_blocks.append(down_block)
if attn_blocks[i] == 1:
attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
self.down_blocks.append(attention_block)
# out
self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.act_fn_out = nn.ReLU()
def forward(self, hidden_states):
hidden_states = self.conv_in(hidden_states)
# down
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
# post-process
hidden_states = self.norm_out(hidden_states)
hidden_states = self.act_fn_out(hidden_states)
return hidden_states