LatentSync / latentsync /pipelines /lipsync_pipeline.py
Francke's picture
t
24c345c
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
import inspect
import os
import shutil
from typing import Callable, List, Optional, Union
import subprocess
import numpy as np
import torch
import torchvision
from diffusers.utils import is_accelerate_available
from packaging import version
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, logging
from einops import rearrange
from ..models.unet import UNet3DConditionModel
from ..utils.image_processor import ImageProcessor
from ..utils.util import read_video, read_audio, write_video
from ..whisper.audio2feature import Audio2Feature
import tqdm
import soundfile as sf
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LipsyncPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
audio_encoder: Audio2Feature,
unet: UNet3DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
audio_encoder=audio_encoder,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.set_progress_bar_config(desc="Steps")
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
latents = rearrange(latents, "b c f h w -> (b f) c h w")
decoded_latents = self.vae.decode(latents).sample
return decoded_latents
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, height, width, callback_steps):
assert height == width, "Height and width must be equal"
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
shape = (
batch_size,
num_channels_latents,
1,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
rand_device = "cpu" if device.type == "mps" else device
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
latents = latents.repeat(1, 1, num_frames, 1, 1)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_latents(
self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
masked_image = masked_image.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
mask = mask.to(device=device, dtype=dtype)
# assume batch size = 1
mask = rearrange(mask, "f c h w -> 1 c f h w")
masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
return mask, masked_image_latents
def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
images = images.to(device=device, dtype=dtype)
image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
return image_latents
def set_progress_bar_config(self, **kwargs):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
self._progress_bar_config.update(kwargs)
@staticmethod
def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
# Paste the surrounding pixels back, because we only want to change the mouth region
pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
masks = masks.to(device=device, dtype=weight_dtype)
combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
return combined_pixel_values
@staticmethod
def pixel_values_to_images(pixel_values: torch.Tensor):
pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
images = (pixel_values * 255).to(torch.uint8)
images = images.cpu().numpy()
return images
def affine_transform_video(self, video_path):
video_frames = read_video(video_path, use_decord=False)
faces = []
boxes = []
affine_matrices = []
print(f"Affine transforming {len(video_frames)} faces...")
for frame in tqdm.tqdm(video_frames):
face, box, affine_matrix = self.image_processor.affine_transform(frame)
faces.append(face)
boxes.append(box)
affine_matrices.append(affine_matrix)
faces = torch.stack(faces)
return faces, video_frames, boxes, affine_matrices
def restore_video(self, faces, video_frames, boxes, affine_matrices):
video_frames = video_frames[: faces.shape[0]]
out_frames = []
for index, face in enumerate(faces):
x1, y1, x2, y2 = boxes[index]
height = int(y2 - y1)
width = int(x2 - x1)
face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True)
face = rearrange(face, "c h w -> h w c")
face = (face / 2 + 0.5).clamp(0, 1)
face = (face * 255).to(torch.uint8).cpu().numpy()
out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
out_frames.append(out_frame)
return np.stack(out_frames, axis=0)
@torch.no_grad()
def __call__(
self,
video_path: str,
audio_path: str,
video_out_path: str,
video_mask_path: str = None,
num_frames: int = 16,
video_fps: int = 25,
audio_sample_rate: int = 16000,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 1.5,
weight_dtype: Optional[torch.dtype] = torch.float16,
eta: float = 0.0,
mask: str = "fix_mask",
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
is_train = self.unet.training
self.unet.eval()
# 0. Define call parameters
batch_size = 1
device = self._execution_device
self.image_processor = ImageProcessor(height, mask=mask, device="cuda")
self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path)
audio_samples = read_audio(audio_path)
# 1. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 2. Check inputs
self.check_inputs(height, width, callback_steps)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 4. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
self.video_fps = video_fps
if self.unet.add_audio_layer:
whisper_feature = self.audio_encoder.audio2feat(audio_path)
whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames
else:
num_inferences = len(video_frames) // num_frames
synced_video_frames = []
masked_video_frames = []
num_channels_latents = self.vae.config.latent_channels
# Prepare latent variables
all_latents = self.prepare_latents(
batch_size,
num_frames * num_inferences,
num_channels_latents,
height,
width,
weight_dtype,
device,
generator,
)
for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
if self.unet.add_audio_layer:
audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
if do_classifier_free_guidance:
empty_audio_embeds = torch.zeros_like(audio_embeds)
audio_embeds = torch.cat([empty_audio_embeds, audio_embeds])
else:
audio_embeds = None
inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames]
latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
inference_video_frames, affine_transform=False
)
# 7. Prepare mask latent variables
mask_latents, masked_image_latents = self.prepare_mask_latents(
masks,
masked_pixel_values,
height,
width,
weight_dtype,
device,
generator,
do_classifier_free_guidance,
)
# 8. Prepare image latents
image_latents = self.prepare_image_latents(
pixel_values,
device,
weight_dtype,
generator,
do_classifier_free_guidance,
)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for j, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat(
[latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1
)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and j % callback_steps == 0:
callback(j, t, latents)
# Recover the pixel values
decoded_latents = self.decode_latents(latents)
decoded_latents = self.paste_surrounding_pixels_back(
decoded_latents, pixel_values, 1 - masks, device, weight_dtype
)
synced_video_frames.append(decoded_latents)
masked_video_frames.append(masked_pixel_values)
synced_video_frames = self.restore_video(
torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices
)
masked_video_frames = self.restore_video(
torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices
)
audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
if is_train:
self.unet.train()
temp_dir = "temp"
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
# write_video(video_mask_path, masked_video_frames, fps=25)
sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
subprocess.run(command, shell=True)