Spaces:
Running
Running
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn.functional as F | |
import torch.nn as nn | |
from einops import rearrange | |
from .third_party.VideoMAEv2.utils import load_videomae_model | |
class TREPALoss: | |
def __init__( | |
self, | |
device="cuda", | |
ckpt_path="/mnt/bn/maliva-gen-ai-v2/chunyu.li/checkpoints/vit_g_hybrid_pt_1200e_ssv2_ft.pth", | |
): | |
self.model = load_videomae_model(device, ckpt_path).eval().to(dtype=torch.float16) | |
self.model.requires_grad_(False) | |
self.bce_loss = nn.BCELoss() | |
def __call__(self, videos_fake, videos_real, loss_type="mse"): | |
batch_size = videos_fake.shape[0] | |
num_frames = videos_fake.shape[2] | |
videos_fake = rearrange(videos_fake.clone(), "b c f h w -> (b f) c h w") | |
videos_real = rearrange(videos_real.clone(), "b c f h w -> (b f) c h w") | |
videos_fake = F.interpolate(videos_fake, size=(224, 224), mode="bilinear") | |
videos_real = F.interpolate(videos_real, size=(224, 224), mode="bilinear") | |
videos_fake = rearrange(videos_fake, "(b f) c h w -> b c f h w", f=num_frames) | |
videos_real = rearrange(videos_real, "(b f) c h w -> b c f h w", f=num_frames) | |
# Because input pixel range is [-1, 1], and model expects pixel range to be [0, 1] | |
videos_fake = (videos_fake / 2 + 0.5).clamp(0, 1) | |
videos_real = (videos_real / 2 + 0.5).clamp(0, 1) | |
feats_fake = self.model.forward_features(videos_fake) | |
feats_real = self.model.forward_features(videos_real) | |
feats_fake = F.normalize(feats_fake, p=2, dim=1) | |
feats_real = F.normalize(feats_real, p=2, dim=1) | |
return F.mse_loss(feats_fake, feats_real) | |
if __name__ == "__main__": | |
# input shape: (b, c, f, h, w) | |
videos_fake = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16) | |
videos_real = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16) | |
trepa_loss = TREPALoss(device="cuda") | |
loss = trepa_loss(videos_fake, videos_real) | |
print(loss) | |