Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import requests | |
from tqdm import tqdm | |
from torchvision import transforms | |
from .videomaev2_finetune import vit_giant_patch14_224 | |
def to_normalized_float_tensor(vid): | |
return vid.permute(3, 0, 1, 2).to(torch.float32) / 255 | |
# NOTE: for those functions, which generally expect mini-batches, we keep them | |
# as non-minibatch so that they are applied as if they were 4d (thus image). | |
# this way, we only apply the transformation in the spatial domain | |
def resize(vid, size, interpolation='bilinear'): | |
# NOTE: using bilinear interpolation because we don't work on minibatches | |
# at this level | |
scale = None | |
if isinstance(size, int): | |
scale = float(size) / min(vid.shape[-2:]) | |
size = None | |
return torch.nn.functional.interpolate( | |
vid, | |
size=size, | |
scale_factor=scale, | |
mode=interpolation, | |
align_corners=False) | |
class ToFloatTensorInZeroOne(object): | |
def __call__(self, vid): | |
return to_normalized_float_tensor(vid) | |
class Resize(object): | |
def __init__(self, size): | |
self.size = size | |
def __call__(self, vid): | |
return resize(vid, self.size) | |
def preprocess_videomae(videos): | |
transform = transforms.Compose( | |
[ToFloatTensorInZeroOne(), | |
Resize((224, 224))]) | |
return torch.stack([transform(f) for f in torch.from_numpy(videos)]) | |
def load_videomae_model(device, ckpt_path=None): | |
if ckpt_path is None: | |
current_dir = os.path.dirname(os.path.abspath(__file__)) | |
ckpt_path = os.path.join(current_dir, 'vit_g_hybrid_pt_1200e_ssv2_ft.pth') | |
if not os.path.exists(ckpt_path): | |
# download the ckpt to the path | |
ckpt_url = 'https://pjlab-gvm-data.oss-cn-shanghai.aliyuncs.com/internvideo/videomaev2/vit_g_hybrid_pt_1200e_ssv2_ft.pth' | |
response = requests.get(ckpt_url, stream=True, allow_redirects=True) | |
total_size = int(response.headers.get("content-length", 0)) | |
block_size = 1024 | |
with tqdm(total=total_size, unit="B", unit_scale=True) as progress_bar: | |
with open(ckpt_path, "wb") as fw: | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
fw.write(data) | |
model = vit_giant_patch14_224( | |
img_size=224, | |
pretrained=False, | |
num_classes=174, | |
all_frames=16, | |
tubelet_size=2, | |
drop_path_rate=0.3, | |
use_mean_pooling=True) | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
for model_key in ['model', 'module']: | |
if model_key in ckpt: | |
ckpt = ckpt[model_key] | |
break | |
model.load_state_dict(ckpt) | |
return model.to(device) |