Spaces:
Running
Running
- configs/audio.yaml +23 -0
- configs/scheduler_config.json +13 -0
- configs/syncnet/syncnet_16_latent.yaml +46 -0
- configs/syncnet/syncnet_16_pixel.yaml +45 -0
- configs/syncnet/syncnet_25_pixel.yaml +45 -0
- configs/unet/first_stage.yaml +103 -0
- configs/unet/second_stage.yaml +103 -0
- eval/detectors/README.md +3 -0
- eval/detectors/__init__.py +1 -0
- eval/detectors/s3fd/__init__.py +61 -0
- eval/detectors/s3fd/box_utils.py +221 -0
- eval/detectors/s3fd/nets.py +174 -0
- eval/draw_syncnet_lines.py +70 -0
- eval/eval_fvd.py +96 -0
- eval/eval_sync_conf.py +77 -0
- eval/eval_sync_conf.sh +2 -0
- eval/eval_syncnet_acc.py +118 -0
- eval/eval_syncnet_acc.sh +3 -0
- eval/fvd.py +56 -0
- eval/hyper_iqa.py +343 -0
- eval/inference_videos.py +37 -0
- eval/syncnet/__init__.py +1 -0
- eval/syncnet/syncnet.py +113 -0
- eval/syncnet/syncnet_eval.py +220 -0
- eval/syncnet_detect.py +251 -0
configs/audio.yaml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audio:
|
2 |
+
num_mels: 80 # Number of mel-spectrogram channels and local conditioning dimensionality
|
3 |
+
rescale: true # Whether to rescale audio prior to preprocessing
|
4 |
+
rescaling_max: 0.9 # Rescaling value
|
5 |
+
use_lws:
|
6 |
+
false # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
|
7 |
+
# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
|
8 |
+
# Does not work if n_ffit is not multiple of hop_size!!
|
9 |
+
n_fft: 800 # Extra window size is filled with 0 paddings to match this parameter
|
10 |
+
hop_size: 200 # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
|
11 |
+
win_size: 800 # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
|
12 |
+
sample_rate: 16000 # 16000Hz (corresponding to librispeech) (sox --i <filename>)
|
13 |
+
frame_shift_ms: null
|
14 |
+
signal_normalization: true
|
15 |
+
allow_clipping_in_normalization: true
|
16 |
+
symmetric_mels: true
|
17 |
+
max_abs_value: 4.0
|
18 |
+
preemphasize: true # whether to apply filter
|
19 |
+
preemphasis: 0.97 # filter coefficient.
|
20 |
+
min_level_db: -100
|
21 |
+
ref_level_db: 20
|
22 |
+
fmin: 55
|
23 |
+
fmax: 7600
|
configs/scheduler_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.6.0.dev0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"num_train_timesteps": 1000,
|
9 |
+
"set_alpha_to_one": false,
|
10 |
+
"steps_offset": 1,
|
11 |
+
"trained_betas": null,
|
12 |
+
"skip_prk_steps": true
|
13 |
+
}
|
configs/syncnet/syncnet_16_latent.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 52)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [32, 64, 128, 256, 512, 1024]
|
5 |
+
downsample_factors: [[2, 1], 2, 2, 2, 2, [2, 3]]
|
6 |
+
attn_blocks: [0, 0, 0, 0, 0, 0]
|
7 |
+
dropout: 0.0
|
8 |
+
visual_encoder: # input (64, 32, 32)
|
9 |
+
in_channels: 64
|
10 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024]
|
11 |
+
downsample_factors: [2, 2, 2, 1, 2, 2]
|
12 |
+
attn_blocks: [0, 0, 0, 0, 0, 0]
|
13 |
+
dropout: 0.0
|
14 |
+
|
15 |
+
ckpt:
|
16 |
+
resume_ckpt_path: ""
|
17 |
+
inference_ckpt_path: ""
|
18 |
+
save_ckpt_steps: 2500
|
19 |
+
|
20 |
+
data:
|
21 |
+
train_output_dir: output/syncnet
|
22 |
+
num_val_samples: 1200
|
23 |
+
batch_size: 120 # 40
|
24 |
+
num_workers: 11 # 11
|
25 |
+
latent_space: true
|
26 |
+
num_frames: 16
|
27 |
+
resolution: 256
|
28 |
+
train_fileslist: ""
|
29 |
+
train_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/train
|
30 |
+
val_fileslist: ""
|
31 |
+
val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
|
32 |
+
audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
33 |
+
lower_half: false
|
34 |
+
pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
|
35 |
+
audio_sample_rate: 16000
|
36 |
+
video_fps: 25
|
37 |
+
|
38 |
+
optimizer:
|
39 |
+
lr: 1e-5
|
40 |
+
max_grad_norm: 1.0
|
41 |
+
|
42 |
+
run:
|
43 |
+
max_train_steps: 10000000
|
44 |
+
validation_steps: 2500
|
45 |
+
mixed_precision_training: true
|
46 |
+
seed: 42
|
configs/syncnet/syncnet_16_pixel.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 52)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [32, 64, 128, 256, 512, 1024, 2048]
|
5 |
+
downsample_factors: [[2, 1], 2, 2, 1, 2, 2, [2, 3]]
|
6 |
+
attn_blocks: [0, 0, 0, 0, 0, 0, 0]
|
7 |
+
dropout: 0.0
|
8 |
+
visual_encoder: # input (48, 128, 256)
|
9 |
+
in_channels: 48
|
10 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024, 2048, 2048]
|
11 |
+
downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
|
12 |
+
attn_blocks: [0, 0, 0, 0, 0, 0, 0, 0]
|
13 |
+
dropout: 0.0
|
14 |
+
|
15 |
+
ckpt:
|
16 |
+
resume_ckpt_path: ""
|
17 |
+
inference_ckpt_path: checkpoints/latentsync_syncnet.pt
|
18 |
+
save_ckpt_steps: 2500
|
19 |
+
|
20 |
+
data:
|
21 |
+
train_output_dir: debug/syncnet
|
22 |
+
num_val_samples: 2048
|
23 |
+
batch_size: 128 # 128
|
24 |
+
num_workers: 11 # 11
|
25 |
+
latent_space: false
|
26 |
+
num_frames: 16
|
27 |
+
resolution: 256
|
28 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
29 |
+
train_data_dir: ""
|
30 |
+
val_fileslist: ""
|
31 |
+
val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
|
32 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
33 |
+
lower_half: true
|
34 |
+
audio_sample_rate: 16000
|
35 |
+
video_fps: 25
|
36 |
+
|
37 |
+
optimizer:
|
38 |
+
lr: 1e-5
|
39 |
+
max_grad_norm: 1.0
|
40 |
+
|
41 |
+
run:
|
42 |
+
max_train_steps: 10000000
|
43 |
+
validation_steps: 2500
|
44 |
+
mixed_precision_training: true
|
45 |
+
seed: 42
|
configs/syncnet/syncnet_25_pixel.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
audio_encoder: # input (1, 80, 80)
|
3 |
+
in_channels: 1
|
4 |
+
block_out_channels: [64, 128, 256, 256, 512, 1024]
|
5 |
+
downsample_factors: [2, 2, 2, 2, 2, 2]
|
6 |
+
dropout: 0.0
|
7 |
+
visual_encoder: # input (75, 128, 256)
|
8 |
+
in_channels: 75
|
9 |
+
block_out_channels: [128, 128, 256, 256, 512, 512, 1024, 1024]
|
10 |
+
downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
|
11 |
+
dropout: 0.0
|
12 |
+
|
13 |
+
ckpt:
|
14 |
+
resume_ckpt_path: ""
|
15 |
+
inference_ckpt_path: ""
|
16 |
+
save_ckpt_steps: 2500
|
17 |
+
|
18 |
+
data:
|
19 |
+
train_output_dir: debug/syncnet
|
20 |
+
num_val_samples: 2048
|
21 |
+
batch_size: 64 # 64
|
22 |
+
num_workers: 11 # 11
|
23 |
+
latent_space: false
|
24 |
+
num_frames: 25
|
25 |
+
resolution: 256
|
26 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_vox_avatars_ads_affine.txt
|
27 |
+
# /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_voxceleb_avatars_affine.txt
|
28 |
+
train_data_dir: ""
|
29 |
+
val_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/vox_affine_val.txt
|
30 |
+
# /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/voxceleb_val.txt
|
31 |
+
val_data_dir: ""
|
32 |
+
audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel
|
33 |
+
lower_half: true
|
34 |
+
pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
|
35 |
+
audio_sample_rate: 16000
|
36 |
+
video_fps: 25
|
37 |
+
|
38 |
+
optimizer:
|
39 |
+
lr: 1e-5
|
40 |
+
max_grad_norm: 1.0
|
41 |
+
|
42 |
+
run:
|
43 |
+
max_train_steps: 10000000
|
44 |
+
mixed_precision_training: true
|
45 |
+
seed: 42
|
configs/unet/first_stage.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
|
3 |
+
train_output_dir: debug/unet
|
4 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
5 |
+
train_data_dir: ""
|
6 |
+
audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
|
7 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
8 |
+
|
9 |
+
val_video_path: assets/demo1_video.mp4
|
10 |
+
val_audio_path: assets/demo1_audio.wav
|
11 |
+
batch_size: 8 # 8
|
12 |
+
num_workers: 11 # 11
|
13 |
+
num_frames: 16
|
14 |
+
resolution: 256
|
15 |
+
mask: fix_mask
|
16 |
+
audio_sample_rate: 16000
|
17 |
+
video_fps: 25
|
18 |
+
|
19 |
+
ckpt:
|
20 |
+
resume_ckpt_path: checkpoints/latentsync_unet.pt
|
21 |
+
save_ckpt_steps: 5000
|
22 |
+
|
23 |
+
run:
|
24 |
+
pixel_space_supervise: false
|
25 |
+
use_syncnet: false
|
26 |
+
sync_loss_weight: 0.05 # 1/283
|
27 |
+
perceptual_loss_weight: 0.1 # 0.1
|
28 |
+
recon_loss_weight: 1 # 1
|
29 |
+
guidance_scale: 1.0 # 1.5 or 1.0
|
30 |
+
trepa_loss_weight: 10
|
31 |
+
inference_steps: 20
|
32 |
+
seed: 1247
|
33 |
+
use_mixed_noise: true
|
34 |
+
mixed_noise_alpha: 1 # 1
|
35 |
+
mixed_precision_training: true
|
36 |
+
enable_gradient_checkpointing: false
|
37 |
+
enable_xformers_memory_efficient_attention: true
|
38 |
+
max_train_steps: 10000000
|
39 |
+
max_train_epochs: -1
|
40 |
+
|
41 |
+
optimizer:
|
42 |
+
lr: 1e-5
|
43 |
+
scale_lr: false
|
44 |
+
max_grad_norm: 1.0
|
45 |
+
lr_scheduler: constant
|
46 |
+
lr_warmup_steps: 0
|
47 |
+
|
48 |
+
model:
|
49 |
+
act_fn: silu
|
50 |
+
add_audio_layer: true
|
51 |
+
custom_audio_layer: false
|
52 |
+
audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
|
53 |
+
attention_head_dim: 8
|
54 |
+
block_out_channels: [320, 640, 1280, 1280]
|
55 |
+
center_input_sample: false
|
56 |
+
cross_attention_dim: 384
|
57 |
+
down_block_types:
|
58 |
+
[
|
59 |
+
"CrossAttnDownBlock3D",
|
60 |
+
"CrossAttnDownBlock3D",
|
61 |
+
"CrossAttnDownBlock3D",
|
62 |
+
"DownBlock3D",
|
63 |
+
]
|
64 |
+
mid_block_type: UNetMidBlock3DCrossAttn
|
65 |
+
up_block_types:
|
66 |
+
[
|
67 |
+
"UpBlock3D",
|
68 |
+
"CrossAttnUpBlock3D",
|
69 |
+
"CrossAttnUpBlock3D",
|
70 |
+
"CrossAttnUpBlock3D",
|
71 |
+
]
|
72 |
+
downsample_padding: 1
|
73 |
+
flip_sin_to_cos: true
|
74 |
+
freq_shift: 0
|
75 |
+
in_channels: 13 # 49
|
76 |
+
layers_per_block: 2
|
77 |
+
mid_block_scale_factor: 1
|
78 |
+
norm_eps: 1e-5
|
79 |
+
norm_num_groups: 32
|
80 |
+
out_channels: 4 # 16
|
81 |
+
sample_size: 64
|
82 |
+
resnet_time_scale_shift: default # Choose between [default, scale_shift]
|
83 |
+
unet_use_cross_frame_attention: false
|
84 |
+
unet_use_temporal_attention: false
|
85 |
+
|
86 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
87 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
|
88 |
+
# We decied to leave the code here for possible future usage
|
89 |
+
use_motion_module: false
|
90 |
+
motion_module_resolutions: [1, 2, 4, 8]
|
91 |
+
motion_module_mid_block: false
|
92 |
+
motion_module_decoder_only: false
|
93 |
+
motion_module_type: Vanilla
|
94 |
+
motion_module_kwargs:
|
95 |
+
num_attention_heads: 8
|
96 |
+
num_transformer_block: 1
|
97 |
+
attention_block_types:
|
98 |
+
- Temporal_Self
|
99 |
+
- Temporal_Self
|
100 |
+
temporal_position_encoding: true
|
101 |
+
temporal_position_encoding_max_len: 16
|
102 |
+
temporal_attention_dim_div: 1
|
103 |
+
zero_initialize: true
|
configs/unet/second_stage.yaml
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
|
3 |
+
train_output_dir: debug/unet
|
4 |
+
train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
|
5 |
+
train_data_dir: ""
|
6 |
+
audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
|
7 |
+
audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
|
8 |
+
|
9 |
+
val_video_path: assets/demo1_video.mp4
|
10 |
+
val_audio_path: assets/demo1_audio.wav
|
11 |
+
batch_size: 2 # 8
|
12 |
+
num_workers: 11 # 11
|
13 |
+
num_frames: 16
|
14 |
+
resolution: 256
|
15 |
+
mask: fix_mask
|
16 |
+
audio_sample_rate: 16000
|
17 |
+
video_fps: 25
|
18 |
+
|
19 |
+
ckpt:
|
20 |
+
resume_ckpt_path: checkpoints/latentsync_unet.pt
|
21 |
+
save_ckpt_steps: 5000
|
22 |
+
|
23 |
+
run:
|
24 |
+
pixel_space_supervise: true
|
25 |
+
use_syncnet: true
|
26 |
+
sync_loss_weight: 0.05 # 1/283
|
27 |
+
perceptual_loss_weight: 0.1 # 0.1
|
28 |
+
recon_loss_weight: 1 # 1
|
29 |
+
guidance_scale: 1.0 # 1.5 or 1.0
|
30 |
+
trepa_loss_weight: 10
|
31 |
+
inference_steps: 20
|
32 |
+
seed: 1247
|
33 |
+
use_mixed_noise: true
|
34 |
+
mixed_noise_alpha: 1 # 1
|
35 |
+
mixed_precision_training: true
|
36 |
+
enable_gradient_checkpointing: false
|
37 |
+
enable_xformers_memory_efficient_attention: true
|
38 |
+
max_train_steps: 10000000
|
39 |
+
max_train_epochs: -1
|
40 |
+
|
41 |
+
optimizer:
|
42 |
+
lr: 1e-5
|
43 |
+
scale_lr: false
|
44 |
+
max_grad_norm: 1.0
|
45 |
+
lr_scheduler: constant
|
46 |
+
lr_warmup_steps: 0
|
47 |
+
|
48 |
+
model:
|
49 |
+
act_fn: silu
|
50 |
+
add_audio_layer: true
|
51 |
+
custom_audio_layer: false
|
52 |
+
audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
|
53 |
+
attention_head_dim: 8
|
54 |
+
block_out_channels: [320, 640, 1280, 1280]
|
55 |
+
center_input_sample: false
|
56 |
+
cross_attention_dim: 384
|
57 |
+
down_block_types:
|
58 |
+
[
|
59 |
+
"CrossAttnDownBlock3D",
|
60 |
+
"CrossAttnDownBlock3D",
|
61 |
+
"CrossAttnDownBlock3D",
|
62 |
+
"DownBlock3D",
|
63 |
+
]
|
64 |
+
mid_block_type: UNetMidBlock3DCrossAttn
|
65 |
+
up_block_types:
|
66 |
+
[
|
67 |
+
"UpBlock3D",
|
68 |
+
"CrossAttnUpBlock3D",
|
69 |
+
"CrossAttnUpBlock3D",
|
70 |
+
"CrossAttnUpBlock3D",
|
71 |
+
]
|
72 |
+
downsample_padding: 1
|
73 |
+
flip_sin_to_cos: true
|
74 |
+
freq_shift: 0
|
75 |
+
in_channels: 13 # 49
|
76 |
+
layers_per_block: 2
|
77 |
+
mid_block_scale_factor: 1
|
78 |
+
norm_eps: 1e-5
|
79 |
+
norm_num_groups: 32
|
80 |
+
out_channels: 4 # 16
|
81 |
+
sample_size: 64
|
82 |
+
resnet_time_scale_shift: default # Choose between [default, scale_shift]
|
83 |
+
unet_use_cross_frame_attention: false
|
84 |
+
unet_use_temporal_attention: false
|
85 |
+
|
86 |
+
# Actually we don't use the motion module in the final version of LatentSync
|
87 |
+
# When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
|
88 |
+
# We decied to leave the code here for possible future usage
|
89 |
+
use_motion_module: false
|
90 |
+
motion_module_resolutions: [1, 2, 4, 8]
|
91 |
+
motion_module_mid_block: false
|
92 |
+
motion_module_decoder_only: false
|
93 |
+
motion_module_type: Vanilla
|
94 |
+
motion_module_kwargs:
|
95 |
+
num_attention_heads: 8
|
96 |
+
num_transformer_block: 1
|
97 |
+
attention_block_types:
|
98 |
+
- Temporal_Self
|
99 |
+
- Temporal_Self
|
100 |
+
temporal_position_encoding: true
|
101 |
+
temporal_position_encoding_max_len: 16
|
102 |
+
temporal_attention_dim_div: 1
|
103 |
+
zero_initialize: true
|
eval/detectors/README.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# Face detector
|
2 |
+
|
3 |
+
This face detector is adapted from `https://github.com/cs-giung/face-detection-pytorch`.
|
eval/detectors/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .s3fd import S3FD
|
eval/detectors/s3fd/__init__.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from .nets import S3FDNet
|
7 |
+
from .box_utils import nms_
|
8 |
+
|
9 |
+
PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth'
|
10 |
+
img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32')
|
11 |
+
|
12 |
+
|
13 |
+
class S3FD():
|
14 |
+
|
15 |
+
def __init__(self, device='cuda'):
|
16 |
+
|
17 |
+
tstamp = time.time()
|
18 |
+
self.device = device
|
19 |
+
|
20 |
+
print('[S3FD] loading with', self.device)
|
21 |
+
self.net = S3FDNet(device=self.device).to(self.device)
|
22 |
+
state_dict = torch.load(PATH_WEIGHT, map_location=self.device)
|
23 |
+
self.net.load_state_dict(state_dict)
|
24 |
+
self.net.eval()
|
25 |
+
print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp))
|
26 |
+
|
27 |
+
def detect_faces(self, image, conf_th=0.8, scales=[1]):
|
28 |
+
|
29 |
+
w, h = image.shape[1], image.shape[0]
|
30 |
+
|
31 |
+
bboxes = np.empty(shape=(0, 5))
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
for s in scales:
|
35 |
+
scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
|
36 |
+
|
37 |
+
scaled_img = np.swapaxes(scaled_img, 1, 2)
|
38 |
+
scaled_img = np.swapaxes(scaled_img, 1, 0)
|
39 |
+
scaled_img = scaled_img[[2, 1, 0], :, :]
|
40 |
+
scaled_img = scaled_img.astype('float32')
|
41 |
+
scaled_img -= img_mean
|
42 |
+
scaled_img = scaled_img[[2, 1, 0], :, :]
|
43 |
+
x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device)
|
44 |
+
y = self.net(x)
|
45 |
+
|
46 |
+
detections = y.data
|
47 |
+
scale = torch.Tensor([w, h, w, h])
|
48 |
+
|
49 |
+
for i in range(detections.size(1)):
|
50 |
+
j = 0
|
51 |
+
while detections[0, i, j, 0] > conf_th:
|
52 |
+
score = detections[0, i, j, 0]
|
53 |
+
pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
|
54 |
+
bbox = (pt[0], pt[1], pt[2], pt[3], score)
|
55 |
+
bboxes = np.vstack((bboxes, bbox))
|
56 |
+
j += 1
|
57 |
+
|
58 |
+
keep = nms_(bboxes, 0.1)
|
59 |
+
bboxes = bboxes[keep]
|
60 |
+
|
61 |
+
return bboxes
|
eval/detectors/s3fd/box_utils.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from itertools import product as product
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
import warnings
|
6 |
+
|
7 |
+
|
8 |
+
def nms_(dets, thresh):
|
9 |
+
"""
|
10 |
+
Courtesy of Ross Girshick
|
11 |
+
[https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
|
12 |
+
"""
|
13 |
+
x1 = dets[:, 0]
|
14 |
+
y1 = dets[:, 1]
|
15 |
+
x2 = dets[:, 2]
|
16 |
+
y2 = dets[:, 3]
|
17 |
+
scores = dets[:, 4]
|
18 |
+
|
19 |
+
areas = (x2 - x1) * (y2 - y1)
|
20 |
+
order = scores.argsort()[::-1]
|
21 |
+
|
22 |
+
keep = []
|
23 |
+
while order.size > 0:
|
24 |
+
i = order[0]
|
25 |
+
keep.append(int(i))
|
26 |
+
xx1 = np.maximum(x1[i], x1[order[1:]])
|
27 |
+
yy1 = np.maximum(y1[i], y1[order[1:]])
|
28 |
+
xx2 = np.minimum(x2[i], x2[order[1:]])
|
29 |
+
yy2 = np.minimum(y2[i], y2[order[1:]])
|
30 |
+
|
31 |
+
w = np.maximum(0.0, xx2 - xx1)
|
32 |
+
h = np.maximum(0.0, yy2 - yy1)
|
33 |
+
inter = w * h
|
34 |
+
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
35 |
+
|
36 |
+
inds = np.where(ovr <= thresh)[0]
|
37 |
+
order = order[inds + 1]
|
38 |
+
|
39 |
+
return np.array(keep).astype(np.int32)
|
40 |
+
|
41 |
+
|
42 |
+
def decode(loc, priors, variances):
|
43 |
+
"""Decode locations from predictions using priors to undo
|
44 |
+
the encoding we did for offset regression at train time.
|
45 |
+
Args:
|
46 |
+
loc (tensor): location predictions for loc layers,
|
47 |
+
Shape: [num_priors,4]
|
48 |
+
priors (tensor): Prior boxes in center-offset form.
|
49 |
+
Shape: [num_priors,4].
|
50 |
+
variances: (list[float]) Variances of priorboxes
|
51 |
+
Return:
|
52 |
+
decoded bounding box predictions
|
53 |
+
"""
|
54 |
+
|
55 |
+
boxes = torch.cat((
|
56 |
+
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
57 |
+
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
58 |
+
boxes[:, :2] -= boxes[:, 2:] / 2
|
59 |
+
boxes[:, 2:] += boxes[:, :2]
|
60 |
+
return boxes
|
61 |
+
|
62 |
+
|
63 |
+
def nms(boxes, scores, overlap=0.5, top_k=200):
|
64 |
+
"""Apply non-maximum suppression at test time to avoid detecting too many
|
65 |
+
overlapping bounding boxes for a given object.
|
66 |
+
Args:
|
67 |
+
boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
|
68 |
+
scores: (tensor) The class predscores for the img, Shape:[num_priors].
|
69 |
+
overlap: (float) The overlap thresh for suppressing unnecessary boxes.
|
70 |
+
top_k: (int) The Maximum number of box preds to consider.
|
71 |
+
Return:
|
72 |
+
The indices of the kept boxes with respect to num_priors.
|
73 |
+
"""
|
74 |
+
|
75 |
+
keep = scores.new(scores.size(0)).zero_().long()
|
76 |
+
if boxes.numel() == 0:
|
77 |
+
return keep, 0
|
78 |
+
x1 = boxes[:, 0]
|
79 |
+
y1 = boxes[:, 1]
|
80 |
+
x2 = boxes[:, 2]
|
81 |
+
y2 = boxes[:, 3]
|
82 |
+
area = torch.mul(x2 - x1, y2 - y1)
|
83 |
+
v, idx = scores.sort(0) # sort in ascending order
|
84 |
+
# I = I[v >= 0.01]
|
85 |
+
idx = idx[-top_k:] # indices of the top-k largest vals
|
86 |
+
xx1 = boxes.new()
|
87 |
+
yy1 = boxes.new()
|
88 |
+
xx2 = boxes.new()
|
89 |
+
yy2 = boxes.new()
|
90 |
+
w = boxes.new()
|
91 |
+
h = boxes.new()
|
92 |
+
|
93 |
+
# keep = torch.Tensor()
|
94 |
+
count = 0
|
95 |
+
while idx.numel() > 0:
|
96 |
+
i = idx[-1] # index of current largest val
|
97 |
+
# keep.append(i)
|
98 |
+
keep[count] = i
|
99 |
+
count += 1
|
100 |
+
if idx.size(0) == 1:
|
101 |
+
break
|
102 |
+
idx = idx[:-1] # remove kept element from view
|
103 |
+
# load bboxes of next highest vals
|
104 |
+
with warnings.catch_warnings():
|
105 |
+
# Ignore UserWarning within this block
|
106 |
+
warnings.simplefilter("ignore", category=UserWarning)
|
107 |
+
torch.index_select(x1, 0, idx, out=xx1)
|
108 |
+
torch.index_select(y1, 0, idx, out=yy1)
|
109 |
+
torch.index_select(x2, 0, idx, out=xx2)
|
110 |
+
torch.index_select(y2, 0, idx, out=yy2)
|
111 |
+
# store element-wise max with next highest score
|
112 |
+
xx1 = torch.clamp(xx1, min=x1[i])
|
113 |
+
yy1 = torch.clamp(yy1, min=y1[i])
|
114 |
+
xx2 = torch.clamp(xx2, max=x2[i])
|
115 |
+
yy2 = torch.clamp(yy2, max=y2[i])
|
116 |
+
w.resize_as_(xx2)
|
117 |
+
h.resize_as_(yy2)
|
118 |
+
w = xx2 - xx1
|
119 |
+
h = yy2 - yy1
|
120 |
+
# check sizes of xx1 and xx2.. after each iteration
|
121 |
+
w = torch.clamp(w, min=0.0)
|
122 |
+
h = torch.clamp(h, min=0.0)
|
123 |
+
inter = w * h
|
124 |
+
# IoU = i / (area(a) + area(b) - i)
|
125 |
+
rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
|
126 |
+
union = (rem_areas - inter) + area[i]
|
127 |
+
IoU = inter / union # store result in iou
|
128 |
+
# keep only elements with an IoU <= overlap
|
129 |
+
idx = idx[IoU.le(overlap)]
|
130 |
+
return keep, count
|
131 |
+
|
132 |
+
|
133 |
+
class Detect(object):
|
134 |
+
|
135 |
+
def __init__(self, num_classes=2,
|
136 |
+
top_k=750, nms_thresh=0.3, conf_thresh=0.05,
|
137 |
+
variance=[0.1, 0.2], nms_top_k=5000):
|
138 |
+
|
139 |
+
self.num_classes = num_classes
|
140 |
+
self.top_k = top_k
|
141 |
+
self.nms_thresh = nms_thresh
|
142 |
+
self.conf_thresh = conf_thresh
|
143 |
+
self.variance = variance
|
144 |
+
self.nms_top_k = nms_top_k
|
145 |
+
|
146 |
+
def forward(self, loc_data, conf_data, prior_data):
|
147 |
+
|
148 |
+
num = loc_data.size(0)
|
149 |
+
num_priors = prior_data.size(0)
|
150 |
+
|
151 |
+
conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
|
152 |
+
batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
|
153 |
+
batch_priors = batch_priors.contiguous().view(-1, 4)
|
154 |
+
|
155 |
+
decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
|
156 |
+
decoded_boxes = decoded_boxes.view(num, num_priors, 4)
|
157 |
+
|
158 |
+
output = torch.zeros(num, self.num_classes, self.top_k, 5)
|
159 |
+
|
160 |
+
for i in range(num):
|
161 |
+
boxes = decoded_boxes[i].clone()
|
162 |
+
conf_scores = conf_preds[i].clone()
|
163 |
+
|
164 |
+
for cl in range(1, self.num_classes):
|
165 |
+
c_mask = conf_scores[cl].gt(self.conf_thresh)
|
166 |
+
scores = conf_scores[cl][c_mask]
|
167 |
+
|
168 |
+
if scores.dim() == 0:
|
169 |
+
continue
|
170 |
+
l_mask = c_mask.unsqueeze(1).expand_as(boxes)
|
171 |
+
boxes_ = boxes[l_mask].view(-1, 4)
|
172 |
+
ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
|
173 |
+
count = count if count < self.top_k else self.top_k
|
174 |
+
|
175 |
+
output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
|
176 |
+
|
177 |
+
return output
|
178 |
+
|
179 |
+
|
180 |
+
class PriorBox(object):
|
181 |
+
|
182 |
+
def __init__(self, input_size, feature_maps,
|
183 |
+
variance=[0.1, 0.2],
|
184 |
+
min_sizes=[16, 32, 64, 128, 256, 512],
|
185 |
+
steps=[4, 8, 16, 32, 64, 128],
|
186 |
+
clip=False):
|
187 |
+
|
188 |
+
super(PriorBox, self).__init__()
|
189 |
+
|
190 |
+
self.imh = input_size[0]
|
191 |
+
self.imw = input_size[1]
|
192 |
+
self.feature_maps = feature_maps
|
193 |
+
|
194 |
+
self.variance = variance
|
195 |
+
self.min_sizes = min_sizes
|
196 |
+
self.steps = steps
|
197 |
+
self.clip = clip
|
198 |
+
|
199 |
+
def forward(self):
|
200 |
+
mean = []
|
201 |
+
for k, fmap in enumerate(self.feature_maps):
|
202 |
+
feath = fmap[0]
|
203 |
+
featw = fmap[1]
|
204 |
+
for i, j in product(range(feath), range(featw)):
|
205 |
+
f_kw = self.imw / self.steps[k]
|
206 |
+
f_kh = self.imh / self.steps[k]
|
207 |
+
|
208 |
+
cx = (j + 0.5) / f_kw
|
209 |
+
cy = (i + 0.5) / f_kh
|
210 |
+
|
211 |
+
s_kw = self.min_sizes[k] / self.imw
|
212 |
+
s_kh = self.min_sizes[k] / self.imh
|
213 |
+
|
214 |
+
mean += [cx, cy, s_kw, s_kh]
|
215 |
+
|
216 |
+
output = torch.FloatTensor(mean).view(-1, 4)
|
217 |
+
|
218 |
+
if self.clip:
|
219 |
+
output.clamp_(max=1, min=0)
|
220 |
+
|
221 |
+
return output
|
eval/detectors/s3fd/nets.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.nn.init as init
|
5 |
+
from .box_utils import Detect, PriorBox
|
6 |
+
|
7 |
+
|
8 |
+
class L2Norm(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, n_channels, scale):
|
11 |
+
super(L2Norm, self).__init__()
|
12 |
+
self.n_channels = n_channels
|
13 |
+
self.gamma = scale or None
|
14 |
+
self.eps = 1e-10
|
15 |
+
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
|
16 |
+
self.reset_parameters()
|
17 |
+
|
18 |
+
def reset_parameters(self):
|
19 |
+
init.constant_(self.weight, self.gamma)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
|
23 |
+
x = torch.div(x, norm)
|
24 |
+
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
+
class S3FDNet(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self, device='cuda'):
|
31 |
+
super(S3FDNet, self).__init__()
|
32 |
+
self.device = device
|
33 |
+
|
34 |
+
self.vgg = nn.ModuleList([
|
35 |
+
nn.Conv2d(3, 64, 3, 1, padding=1),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
nn.Conv2d(64, 64, 3, 1, padding=1),
|
38 |
+
nn.ReLU(inplace=True),
|
39 |
+
nn.MaxPool2d(2, 2),
|
40 |
+
|
41 |
+
nn.Conv2d(64, 128, 3, 1, padding=1),
|
42 |
+
nn.ReLU(inplace=True),
|
43 |
+
nn.Conv2d(128, 128, 3, 1, padding=1),
|
44 |
+
nn.ReLU(inplace=True),
|
45 |
+
nn.MaxPool2d(2, 2),
|
46 |
+
|
47 |
+
nn.Conv2d(128, 256, 3, 1, padding=1),
|
48 |
+
nn.ReLU(inplace=True),
|
49 |
+
nn.Conv2d(256, 256, 3, 1, padding=1),
|
50 |
+
nn.ReLU(inplace=True),
|
51 |
+
nn.Conv2d(256, 256, 3, 1, padding=1),
|
52 |
+
nn.ReLU(inplace=True),
|
53 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
54 |
+
|
55 |
+
nn.Conv2d(256, 512, 3, 1, padding=1),
|
56 |
+
nn.ReLU(inplace=True),
|
57 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
58 |
+
nn.ReLU(inplace=True),
|
59 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
60 |
+
nn.ReLU(inplace=True),
|
61 |
+
nn.MaxPool2d(2, 2),
|
62 |
+
|
63 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
64 |
+
nn.ReLU(inplace=True),
|
65 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
66 |
+
nn.ReLU(inplace=True),
|
67 |
+
nn.Conv2d(512, 512, 3, 1, padding=1),
|
68 |
+
nn.ReLU(inplace=True),
|
69 |
+
nn.MaxPool2d(2, 2),
|
70 |
+
|
71 |
+
nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
|
72 |
+
nn.ReLU(inplace=True),
|
73 |
+
nn.Conv2d(1024, 1024, 1, 1),
|
74 |
+
nn.ReLU(inplace=True),
|
75 |
+
])
|
76 |
+
|
77 |
+
self.L2Norm3_3 = L2Norm(256, 10)
|
78 |
+
self.L2Norm4_3 = L2Norm(512, 8)
|
79 |
+
self.L2Norm5_3 = L2Norm(512, 5)
|
80 |
+
|
81 |
+
self.extras = nn.ModuleList([
|
82 |
+
nn.Conv2d(1024, 256, 1, 1),
|
83 |
+
nn.Conv2d(256, 512, 3, 2, padding=1),
|
84 |
+
nn.Conv2d(512, 128, 1, 1),
|
85 |
+
nn.Conv2d(128, 256, 3, 2, padding=1),
|
86 |
+
])
|
87 |
+
|
88 |
+
self.loc = nn.ModuleList([
|
89 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
90 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
91 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
92 |
+
nn.Conv2d(1024, 4, 3, 1, padding=1),
|
93 |
+
nn.Conv2d(512, 4, 3, 1, padding=1),
|
94 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
95 |
+
])
|
96 |
+
|
97 |
+
self.conf = nn.ModuleList([
|
98 |
+
nn.Conv2d(256, 4, 3, 1, padding=1),
|
99 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
100 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
101 |
+
nn.Conv2d(1024, 2, 3, 1, padding=1),
|
102 |
+
nn.Conv2d(512, 2, 3, 1, padding=1),
|
103 |
+
nn.Conv2d(256, 2, 3, 1, padding=1),
|
104 |
+
])
|
105 |
+
|
106 |
+
self.softmax = nn.Softmax(dim=-1)
|
107 |
+
self.detect = Detect()
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
size = x.size()[2:]
|
111 |
+
sources = list()
|
112 |
+
loc = list()
|
113 |
+
conf = list()
|
114 |
+
|
115 |
+
for k in range(16):
|
116 |
+
x = self.vgg[k](x)
|
117 |
+
s = self.L2Norm3_3(x)
|
118 |
+
sources.append(s)
|
119 |
+
|
120 |
+
for k in range(16, 23):
|
121 |
+
x = self.vgg[k](x)
|
122 |
+
s = self.L2Norm4_3(x)
|
123 |
+
sources.append(s)
|
124 |
+
|
125 |
+
for k in range(23, 30):
|
126 |
+
x = self.vgg[k](x)
|
127 |
+
s = self.L2Norm5_3(x)
|
128 |
+
sources.append(s)
|
129 |
+
|
130 |
+
for k in range(30, len(self.vgg)):
|
131 |
+
x = self.vgg[k](x)
|
132 |
+
sources.append(x)
|
133 |
+
|
134 |
+
# apply extra layers and cache source layer outputs
|
135 |
+
for k, v in enumerate(self.extras):
|
136 |
+
x = F.relu(v(x), inplace=True)
|
137 |
+
if k % 2 == 1:
|
138 |
+
sources.append(x)
|
139 |
+
|
140 |
+
# apply multibox head to source layers
|
141 |
+
loc_x = self.loc[0](sources[0])
|
142 |
+
conf_x = self.conf[0](sources[0])
|
143 |
+
|
144 |
+
max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
|
145 |
+
conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
|
146 |
+
|
147 |
+
loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
|
148 |
+
conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
|
149 |
+
|
150 |
+
for i in range(1, len(sources)):
|
151 |
+
x = sources[i]
|
152 |
+
conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
|
153 |
+
loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
|
154 |
+
|
155 |
+
features_maps = []
|
156 |
+
for i in range(len(loc)):
|
157 |
+
feat = []
|
158 |
+
feat += [loc[i].size(1), loc[i].size(2)]
|
159 |
+
features_maps += [feat]
|
160 |
+
|
161 |
+
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
|
162 |
+
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
|
163 |
+
|
164 |
+
with torch.no_grad():
|
165 |
+
self.priorbox = PriorBox(size, features_maps)
|
166 |
+
self.priors = self.priorbox.forward()
|
167 |
+
|
168 |
+
output = self.detect.forward(
|
169 |
+
loc.view(loc.size(0), -1, 4),
|
170 |
+
self.softmax(conf.view(conf.size(0), -1, 2)),
|
171 |
+
self.priors.type(type(x.data)).to(self.device)
|
172 |
+
)
|
173 |
+
|
174 |
+
return output
|
eval/draw_syncnet_lines.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
|
18 |
+
|
19 |
+
class Chart:
|
20 |
+
def __init__(self):
|
21 |
+
self.loss_list = []
|
22 |
+
|
23 |
+
def add_ckpt(self, ckpt_path, line_name):
|
24 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
25 |
+
train_step_list = ckpt["train_step_list"]
|
26 |
+
train_loss_list = ckpt["train_loss_list"]
|
27 |
+
val_step_list = ckpt["val_step_list"]
|
28 |
+
val_loss_list = ckpt["val_loss_list"]
|
29 |
+
val_step_list = [val_step_list[0]] + val_step_list[4::5]
|
30 |
+
val_loss_list = [val_loss_list[0]] + val_loss_list[4::5]
|
31 |
+
self.loss_list.append((line_name, train_step_list, train_loss_list, val_step_list, val_loss_list))
|
32 |
+
|
33 |
+
def draw(self, save_path, plot_val=True):
|
34 |
+
# Global settings
|
35 |
+
plt.rcParams["font.size"] = 14
|
36 |
+
plt.rcParams["font.family"] = "serif"
|
37 |
+
plt.rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Lucida Grande"]
|
38 |
+
plt.rcParams["font.serif"] = ["Times New Roman", "DejaVu Serif"]
|
39 |
+
|
40 |
+
# Creating the plot
|
41 |
+
plt.figure(figsize=(7.766, 4.8)) # Golden ratio
|
42 |
+
for loss in self.loss_list:
|
43 |
+
if plot_val:
|
44 |
+
(line,) = plt.plot(loss[1], loss[2], label=loss[0], linewidth=0.5, alpha=0.5)
|
45 |
+
line_color = line.get_color()
|
46 |
+
plt.plot(loss[3], loss[4], linewidth=1.5, color=line_color)
|
47 |
+
else:
|
48 |
+
plt.plot(loss[1], loss[2], label=loss[0], linewidth=1)
|
49 |
+
plt.xlabel("Step")
|
50 |
+
plt.ylabel("Loss")
|
51 |
+
legend = plt.legend()
|
52 |
+
# legend = plt.legend(loc='upper right', bbox_to_anchor=(1, 0.82))
|
53 |
+
|
54 |
+
# Adjust the linewidth of legend
|
55 |
+
for line in legend.get_lines():
|
56 |
+
line.set_linewidth(2)
|
57 |
+
|
58 |
+
plt.savefig(save_path, transparent=True)
|
59 |
+
plt.close()
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
chart = Chart()
|
64 |
+
# chart.add_ckpt("output/syncnet/train-2024_10_25-18:14:43/checkpoints/checkpoint-10000.pt", "w/ self-attn")
|
65 |
+
# chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "w/o self-attn")
|
66 |
+
chart.add_ckpt("output/syncnet/train-2024_10_24-21:03:11/checkpoints/checkpoint-10000.pt", "Dim 512")
|
67 |
+
chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "Dim 2048")
|
68 |
+
chart.add_ckpt("output/syncnet/train-2024_10_24-22:37:04/checkpoints/checkpoint-10000.pt", "Dim 4096")
|
69 |
+
chart.add_ckpt("output/syncnet/train-2024_10_25-02:30:17/checkpoints/checkpoint-10000.pt", "Dim 6144")
|
70 |
+
chart.draw("ablation.pdf", plot_val=True)
|
eval/eval_fvd.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import mediapipe as mp
|
16 |
+
import cv2
|
17 |
+
from decord import VideoReader
|
18 |
+
from einops import rearrange
|
19 |
+
import os
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
import tqdm
|
23 |
+
from eval.fvd import compute_our_fvd
|
24 |
+
|
25 |
+
|
26 |
+
class FVD:
|
27 |
+
def __init__(self, resolution=(224, 224)):
|
28 |
+
self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
|
29 |
+
self.resolution = resolution
|
30 |
+
|
31 |
+
def detect_face(self, image):
|
32 |
+
height, width = image.shape[:2]
|
33 |
+
# Process the image and detect faces.
|
34 |
+
results = self.face_detector.process(image)
|
35 |
+
|
36 |
+
if not results.detections: # Face not detected
|
37 |
+
raise Exception("Face not detected")
|
38 |
+
|
39 |
+
detection = results.detections[0] # Only use the first face in the image
|
40 |
+
bounding_box = detection.location_data.relative_bounding_box
|
41 |
+
xmin = int(bounding_box.xmin * width)
|
42 |
+
ymin = int(bounding_box.ymin * height)
|
43 |
+
face_width = int(bounding_box.width * width)
|
44 |
+
face_height = int(bounding_box.height * height)
|
45 |
+
|
46 |
+
# Crop the image to the bounding box.
|
47 |
+
xmin = max(0, xmin)
|
48 |
+
ymin = max(0, ymin)
|
49 |
+
xmax = min(width, xmin + face_width)
|
50 |
+
ymax = min(height, ymin + face_height)
|
51 |
+
image = image[ymin:ymax, xmin:xmax]
|
52 |
+
|
53 |
+
return image
|
54 |
+
|
55 |
+
def detect_video(self, video_path, real: bool = True):
|
56 |
+
vr = VideoReader(video_path)
|
57 |
+
video_frames = vr[20:36].asnumpy() # Use one frame per second
|
58 |
+
vr.seek(0) # avoid memory leak
|
59 |
+
faces = []
|
60 |
+
for frame in video_frames:
|
61 |
+
face = self.detect_face(frame)
|
62 |
+
face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
|
63 |
+
faces.append(face)
|
64 |
+
|
65 |
+
if len(faces) != 16:
|
66 |
+
return None
|
67 |
+
faces = np.stack(faces, axis=0) # (f, h, w, c)
|
68 |
+
faces = torch.from_numpy(faces)
|
69 |
+
return faces
|
70 |
+
|
71 |
+
|
72 |
+
def eval_fvd(real_videos_dir, fake_videos_dir):
|
73 |
+
fvd = FVD()
|
74 |
+
real_features_list = []
|
75 |
+
fake_features_list = []
|
76 |
+
for file in tqdm.tqdm(os.listdir(fake_videos_dir)):
|
77 |
+
if file.endswith(".mp4"):
|
78 |
+
real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4"))
|
79 |
+
fake_video_path = os.path.join(fake_videos_dir, file)
|
80 |
+
real_features = fvd.detect_video(real_video_path, real=True)
|
81 |
+
fake_features = fvd.detect_video(fake_video_path, real=False)
|
82 |
+
if real_features is None or fake_features is None:
|
83 |
+
continue
|
84 |
+
real_features_list.append(real_features)
|
85 |
+
fake_features_list.append(fake_features)
|
86 |
+
|
87 |
+
real_features = torch.stack(real_features_list) / 255.0
|
88 |
+
fake_features = torch.stack(fake_features_list) / 255.0
|
89 |
+
print(compute_our_fvd(real_features, fake_features, device="cpu"))
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross"
|
94 |
+
fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross"
|
95 |
+
|
96 |
+
eval_fvd(real_videos_dir, fake_videos_dir)
|
eval/eval_sync_conf.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import os
|
17 |
+
import tqdm
|
18 |
+
from statistics import fmean
|
19 |
+
from eval.syncnet import SyncNetEval
|
20 |
+
from eval.syncnet_detect import SyncNetDetector
|
21 |
+
from latentsync.utils.util import red_text
|
22 |
+
import torch
|
23 |
+
|
24 |
+
|
25 |
+
def syncnet_eval(syncnet, syncnet_detector, video_path, temp_dir, detect_results_dir="detect_results"):
|
26 |
+
syncnet_detector(video_path=video_path, min_track=50)
|
27 |
+
crop_videos = os.listdir(os.path.join(detect_results_dir, "crop"))
|
28 |
+
if crop_videos == []:
|
29 |
+
raise Exception(red_text(f"Face not detected in {video_path}"))
|
30 |
+
av_offset_list = []
|
31 |
+
conf_list = []
|
32 |
+
for video in crop_videos:
|
33 |
+
av_offset, _, conf = syncnet.evaluate(
|
34 |
+
video_path=os.path.join(detect_results_dir, "crop", video), temp_dir=temp_dir
|
35 |
+
)
|
36 |
+
av_offset_list.append(av_offset)
|
37 |
+
conf_list.append(conf)
|
38 |
+
av_offset = int(fmean(av_offset_list))
|
39 |
+
conf = fmean(conf_list)
|
40 |
+
print(f"Input video: {video_path}\nSyncNet confidence: {conf:.2f}\nAV offset: {av_offset}")
|
41 |
+
return av_offset, conf
|
42 |
+
|
43 |
+
|
44 |
+
def main():
|
45 |
+
parser = argparse.ArgumentParser(description="SyncNet")
|
46 |
+
parser.add_argument("--initial_model", type=str, default="checkpoints/auxiliary/syncnet_v2.model", help="")
|
47 |
+
parser.add_argument("--video_path", type=str, default=None, help="")
|
48 |
+
parser.add_argument("--videos_dir", type=str, default="/root/processed")
|
49 |
+
parser.add_argument("--temp_dir", type=str, default="temp", help="")
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
|
53 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
54 |
+
|
55 |
+
syncnet = SyncNetEval(device=device)
|
56 |
+
syncnet.loadParameters(args.initial_model)
|
57 |
+
|
58 |
+
syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
|
59 |
+
|
60 |
+
if args.video_path is not None:
|
61 |
+
syncnet_eval(syncnet, syncnet_detector, args.video_path, args.temp_dir)
|
62 |
+
else:
|
63 |
+
sync_conf_list = []
|
64 |
+
video_names = sorted([f for f in os.listdir(args.videos_dir) if f.endswith(".mp4")])
|
65 |
+
for video_name in tqdm.tqdm(video_names):
|
66 |
+
try:
|
67 |
+
_, conf = syncnet_eval(
|
68 |
+
syncnet, syncnet_detector, os.path.join(args.videos_dir, video_name), args.temp_dir
|
69 |
+
)
|
70 |
+
sync_conf_list.append(conf)
|
71 |
+
except Exception as e:
|
72 |
+
print(e)
|
73 |
+
print(f"The average sync confidence is {fmean(sync_conf_list):.02f}")
|
74 |
+
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
main()
|
eval/eval_sync_conf.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
python -m eval.eval_sync_conf --video_path "RD_Radio1_000_006_out.mp4"
|
eval/eval_syncnet_acc.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
from tqdm.auto import tqdm
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from einops import rearrange
|
20 |
+
from latentsync.models.syncnet import SyncNet
|
21 |
+
from latentsync.data.syncnet_dataset import SyncNetDataset
|
22 |
+
from diffusers import AutoencoderKL
|
23 |
+
from omegaconf import OmegaConf
|
24 |
+
from accelerate.utils import set_seed
|
25 |
+
|
26 |
+
|
27 |
+
def main(config):
|
28 |
+
set_seed(config.run.seed)
|
29 |
+
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
|
32 |
+
if config.data.latent_space:
|
33 |
+
vae = AutoencoderKL.from_pretrained(
|
34 |
+
"runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
|
35 |
+
)
|
36 |
+
vae.requires_grad_(False)
|
37 |
+
vae.to(device)
|
38 |
+
|
39 |
+
# Dataset and Dataloader setup
|
40 |
+
dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
|
41 |
+
|
42 |
+
test_dataloader = torch.utils.data.DataLoader(
|
43 |
+
dataset,
|
44 |
+
batch_size=config.data.batch_size,
|
45 |
+
shuffle=False,
|
46 |
+
num_workers=config.data.num_workers,
|
47 |
+
drop_last=False,
|
48 |
+
worker_init_fn=dataset.worker_init_fn,
|
49 |
+
)
|
50 |
+
|
51 |
+
# Model
|
52 |
+
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
|
53 |
+
|
54 |
+
print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
|
55 |
+
checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
|
56 |
+
|
57 |
+
syncnet.load_state_dict(checkpoint["state_dict"])
|
58 |
+
syncnet.to(dtype=torch.float16)
|
59 |
+
syncnet.requires_grad_(False)
|
60 |
+
syncnet.eval()
|
61 |
+
|
62 |
+
global_step = 0
|
63 |
+
num_val_batches = config.data.num_val_samples // config.data.batch_size
|
64 |
+
progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
|
65 |
+
|
66 |
+
num_correct_preds = 0
|
67 |
+
num_total_preds = 0
|
68 |
+
|
69 |
+
while True:
|
70 |
+
for step, batch in enumerate(test_dataloader):
|
71 |
+
### >>>> Test >>>> ###
|
72 |
+
|
73 |
+
frames = batch["frames"].to(device, dtype=torch.float16)
|
74 |
+
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
|
75 |
+
y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
|
76 |
+
|
77 |
+
if config.data.latent_space:
|
78 |
+
frames = rearrange(frames, "b f c h w -> (b f) c h w")
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
frames = vae.encode(frames).latent_dist.sample() * 0.18215
|
82 |
+
|
83 |
+
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
|
84 |
+
else:
|
85 |
+
frames = rearrange(frames, "b f c h w -> b (f c) h w")
|
86 |
+
|
87 |
+
if config.data.lower_half:
|
88 |
+
height = frames.shape[2]
|
89 |
+
frames = frames[:, :, height // 2 :, :]
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
vision_embeds, audio_embeds = syncnet(frames, audio_samples)
|
93 |
+
|
94 |
+
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
|
95 |
+
|
96 |
+
preds = (sims > 0.5).to(dtype=torch.float16)
|
97 |
+
num_correct_preds += (preds == y).sum().item()
|
98 |
+
num_total_preds += len(sims)
|
99 |
+
|
100 |
+
progress_bar.update(1)
|
101 |
+
global_step += 1
|
102 |
+
|
103 |
+
if global_step >= num_val_batches:
|
104 |
+
progress_bar.close()
|
105 |
+
print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
|
106 |
+
return
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
|
111 |
+
|
112 |
+
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
|
113 |
+
args = parser.parse_args()
|
114 |
+
|
115 |
+
# Load a configuration file
|
116 |
+
config = OmegaConf.load(args.config_path)
|
117 |
+
|
118 |
+
main(config)
|
eval/eval_syncnet_acc.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
python -m eval.eval_syncnet_acc --config_path "configs/syncnet/syncnet_16_pixel.yaml"
|
eval/fvd.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py
|
2 |
+
|
3 |
+
from typing import Tuple
|
4 |
+
import scipy
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float:
|
10 |
+
mu_gen, sigma_gen = compute_stats(feats_fake)
|
11 |
+
mu_real, sigma_real = compute_stats(feats_real)
|
12 |
+
|
13 |
+
m = np.square(mu_gen - mu_real).sum()
|
14 |
+
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
|
15 |
+
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
|
16 |
+
|
17 |
+
return float(fid)
|
18 |
+
|
19 |
+
|
20 |
+
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
21 |
+
mu = feats.mean(axis=0) # [d]
|
22 |
+
sigma = np.cov(feats, rowvar=False) # [d, d]
|
23 |
+
|
24 |
+
return mu, sigma
|
25 |
+
|
26 |
+
|
27 |
+
@torch.no_grad()
|
28 |
+
def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float:
|
29 |
+
i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt"
|
30 |
+
i3d_kwargs = dict(
|
31 |
+
rescale=False, resize=False, return_features=True
|
32 |
+
) # Return raw features before the softmax layer.
|
33 |
+
|
34 |
+
with open(i3d_path, "rb") as f:
|
35 |
+
i3d_model = torch.jit.load(f).eval().to(device)
|
36 |
+
|
37 |
+
videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device)
|
38 |
+
videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device)
|
39 |
+
|
40 |
+
feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy()
|
41 |
+
feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy()
|
42 |
+
|
43 |
+
return compute_fvd(feats_fake, feats_real)
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
# input shape: (b, f, h, w, c)
|
48 |
+
videos_fake = torch.rand(10, 16, 224, 224, 3)
|
49 |
+
videos_real = torch.rand(10, 16, 224, 224, 3)
|
50 |
+
|
51 |
+
our_fvd_result = compute_our_fvd(videos_fake, videos_real)
|
52 |
+
print(f"[FVD scores] Ours: {our_fvd_result}")
|
53 |
+
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
main()
|
eval/hyper_iqa.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
|
2 |
+
|
3 |
+
import torch as torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn import init
|
7 |
+
import math
|
8 |
+
import torch.utils.model_zoo as model_zoo
|
9 |
+
|
10 |
+
model_urls = {
|
11 |
+
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
12 |
+
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
13 |
+
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
14 |
+
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
15 |
+
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class HyperNet(nn.Module):
|
20 |
+
"""
|
21 |
+
Hyper network for learning perceptual rules.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
lda_out_channels: local distortion aware module output size.
|
25 |
+
hyper_in_channels: input feature channels for hyper network.
|
26 |
+
target_in_size: input vector size for target network.
|
27 |
+
target_fc(i)_size: fully connection layer size of target network.
|
28 |
+
feature_size: input feature map width/height for hyper network.
|
29 |
+
|
30 |
+
Note:
|
31 |
+
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
|
32 |
+
|
33 |
+
"""
|
34 |
+
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
|
35 |
+
super(HyperNet, self).__init__()
|
36 |
+
|
37 |
+
self.hyperInChn = hyper_in_channels
|
38 |
+
self.target_in_size = target_in_size
|
39 |
+
self.f1 = target_fc1_size
|
40 |
+
self.f2 = target_fc2_size
|
41 |
+
self.f3 = target_fc3_size
|
42 |
+
self.f4 = target_fc4_size
|
43 |
+
self.feature_size = feature_size
|
44 |
+
|
45 |
+
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
|
46 |
+
|
47 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
48 |
+
|
49 |
+
# Conv layers for resnet output features
|
50 |
+
self.conv1 = nn.Sequential(
|
51 |
+
nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
|
52 |
+
nn.ReLU(inplace=True),
|
53 |
+
nn.Conv2d(1024, 512, 1, padding=(0, 0)),
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
|
56 |
+
nn.ReLU(inplace=True)
|
57 |
+
)
|
58 |
+
|
59 |
+
# Hyper network part, conv for generating target fc weights, fc for generating target fc biases
|
60 |
+
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
|
61 |
+
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
|
62 |
+
|
63 |
+
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
|
64 |
+
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
|
65 |
+
|
66 |
+
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
|
67 |
+
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
|
68 |
+
|
69 |
+
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
|
70 |
+
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
|
71 |
+
|
72 |
+
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
|
73 |
+
self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
|
74 |
+
|
75 |
+
# initialize
|
76 |
+
for i, m_name in enumerate(self._modules):
|
77 |
+
if i > 2:
|
78 |
+
nn.init.kaiming_normal_(self._modules[m_name].weight.data)
|
79 |
+
|
80 |
+
def forward(self, img):
|
81 |
+
feature_size = self.feature_size
|
82 |
+
|
83 |
+
res_out = self.res(img)
|
84 |
+
|
85 |
+
# input vector for target net
|
86 |
+
target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
|
87 |
+
|
88 |
+
# input features for hyper net
|
89 |
+
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
|
90 |
+
|
91 |
+
# generating target net weights & biases
|
92 |
+
target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
|
93 |
+
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
|
94 |
+
|
95 |
+
target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
|
96 |
+
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
|
97 |
+
|
98 |
+
target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
|
99 |
+
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
|
100 |
+
|
101 |
+
target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
|
102 |
+
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
|
103 |
+
|
104 |
+
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
|
105 |
+
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
|
106 |
+
|
107 |
+
out = {}
|
108 |
+
out['target_in_vec'] = target_in_vec
|
109 |
+
out['target_fc1w'] = target_fc1w
|
110 |
+
out['target_fc1b'] = target_fc1b
|
111 |
+
out['target_fc2w'] = target_fc2w
|
112 |
+
out['target_fc2b'] = target_fc2b
|
113 |
+
out['target_fc3w'] = target_fc3w
|
114 |
+
out['target_fc3b'] = target_fc3b
|
115 |
+
out['target_fc4w'] = target_fc4w
|
116 |
+
out['target_fc4b'] = target_fc4b
|
117 |
+
out['target_fc5w'] = target_fc5w
|
118 |
+
out['target_fc5b'] = target_fc5b
|
119 |
+
|
120 |
+
return out
|
121 |
+
|
122 |
+
|
123 |
+
class TargetNet(nn.Module):
|
124 |
+
"""
|
125 |
+
Target network for quality prediction.
|
126 |
+
"""
|
127 |
+
def __init__(self, paras):
|
128 |
+
super(TargetNet, self).__init__()
|
129 |
+
self.l1 = nn.Sequential(
|
130 |
+
TargetFC(paras['target_fc1w'], paras['target_fc1b']),
|
131 |
+
nn.Sigmoid(),
|
132 |
+
)
|
133 |
+
self.l2 = nn.Sequential(
|
134 |
+
TargetFC(paras['target_fc2w'], paras['target_fc2b']),
|
135 |
+
nn.Sigmoid(),
|
136 |
+
)
|
137 |
+
|
138 |
+
self.l3 = nn.Sequential(
|
139 |
+
TargetFC(paras['target_fc3w'], paras['target_fc3b']),
|
140 |
+
nn.Sigmoid(),
|
141 |
+
)
|
142 |
+
|
143 |
+
self.l4 = nn.Sequential(
|
144 |
+
TargetFC(paras['target_fc4w'], paras['target_fc4b']),
|
145 |
+
nn.Sigmoid(),
|
146 |
+
TargetFC(paras['target_fc5w'], paras['target_fc5b']),
|
147 |
+
)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
q = self.l1(x)
|
151 |
+
# q = F.dropout(q)
|
152 |
+
q = self.l2(q)
|
153 |
+
q = self.l3(q)
|
154 |
+
q = self.l4(q).squeeze()
|
155 |
+
return q
|
156 |
+
|
157 |
+
|
158 |
+
class TargetFC(nn.Module):
|
159 |
+
"""
|
160 |
+
Fully connection operations for target net
|
161 |
+
|
162 |
+
Note:
|
163 |
+
Weights & biases are different for different images in a batch,
|
164 |
+
thus here we use group convolution for calculating images in a batch with individual weights & biases.
|
165 |
+
"""
|
166 |
+
def __init__(self, weight, bias):
|
167 |
+
super(TargetFC, self).__init__()
|
168 |
+
self.weight = weight
|
169 |
+
self.bias = bias
|
170 |
+
|
171 |
+
def forward(self, input_):
|
172 |
+
|
173 |
+
input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
|
174 |
+
weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
|
175 |
+
bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
|
176 |
+
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
|
177 |
+
|
178 |
+
return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
|
179 |
+
|
180 |
+
|
181 |
+
class Bottleneck(nn.Module):
|
182 |
+
expansion = 4
|
183 |
+
|
184 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
185 |
+
super(Bottleneck, self).__init__()
|
186 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
187 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
188 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
189 |
+
padding=1, bias=False)
|
190 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
191 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
192 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
193 |
+
self.relu = nn.ReLU(inplace=True)
|
194 |
+
self.downsample = downsample
|
195 |
+
self.stride = stride
|
196 |
+
|
197 |
+
def forward(self, x):
|
198 |
+
residual = x
|
199 |
+
|
200 |
+
out = self.conv1(x)
|
201 |
+
out = self.bn1(out)
|
202 |
+
out = self.relu(out)
|
203 |
+
|
204 |
+
out = self.conv2(out)
|
205 |
+
out = self.bn2(out)
|
206 |
+
out = self.relu(out)
|
207 |
+
|
208 |
+
out = self.conv3(out)
|
209 |
+
out = self.bn3(out)
|
210 |
+
|
211 |
+
if self.downsample is not None:
|
212 |
+
residual = self.downsample(x)
|
213 |
+
|
214 |
+
out += residual
|
215 |
+
out = self.relu(out)
|
216 |
+
|
217 |
+
return out
|
218 |
+
|
219 |
+
|
220 |
+
class ResNetBackbone(nn.Module):
|
221 |
+
|
222 |
+
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
|
223 |
+
super(ResNetBackbone, self).__init__()
|
224 |
+
self.inplanes = 64
|
225 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
226 |
+
self.bn1 = nn.BatchNorm2d(64)
|
227 |
+
self.relu = nn.ReLU(inplace=True)
|
228 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
229 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
230 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
231 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
232 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
233 |
+
|
234 |
+
# local distortion aware module
|
235 |
+
self.lda1_pool = nn.Sequential(
|
236 |
+
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
|
237 |
+
nn.AvgPool2d(7, stride=7),
|
238 |
+
)
|
239 |
+
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
|
240 |
+
|
241 |
+
self.lda2_pool = nn.Sequential(
|
242 |
+
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
|
243 |
+
nn.AvgPool2d(7, stride=7),
|
244 |
+
)
|
245 |
+
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
|
246 |
+
|
247 |
+
self.lda3_pool = nn.Sequential(
|
248 |
+
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
|
249 |
+
nn.AvgPool2d(7, stride=7),
|
250 |
+
)
|
251 |
+
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
|
252 |
+
|
253 |
+
self.lda4_pool = nn.AvgPool2d(7, stride=7)
|
254 |
+
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
|
255 |
+
|
256 |
+
for m in self.modules():
|
257 |
+
if isinstance(m, nn.Conv2d):
|
258 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
259 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
260 |
+
elif isinstance(m, nn.BatchNorm2d):
|
261 |
+
m.weight.data.fill_(1)
|
262 |
+
m.bias.data.zero_()
|
263 |
+
|
264 |
+
# initialize
|
265 |
+
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
|
266 |
+
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
|
267 |
+
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
|
268 |
+
nn.init.kaiming_normal_(self.lda1_fc.weight.data)
|
269 |
+
nn.init.kaiming_normal_(self.lda2_fc.weight.data)
|
270 |
+
nn.init.kaiming_normal_(self.lda3_fc.weight.data)
|
271 |
+
nn.init.kaiming_normal_(self.lda4_fc.weight.data)
|
272 |
+
|
273 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
274 |
+
downsample = None
|
275 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
276 |
+
downsample = nn.Sequential(
|
277 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
278 |
+
kernel_size=1, stride=stride, bias=False),
|
279 |
+
nn.BatchNorm2d(planes * block.expansion),
|
280 |
+
)
|
281 |
+
|
282 |
+
layers = []
|
283 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
284 |
+
self.inplanes = planes * block.expansion
|
285 |
+
for i in range(1, blocks):
|
286 |
+
layers.append(block(self.inplanes, planes))
|
287 |
+
|
288 |
+
return nn.Sequential(*layers)
|
289 |
+
|
290 |
+
def forward(self, x):
|
291 |
+
x = self.conv1(x)
|
292 |
+
x = self.bn1(x)
|
293 |
+
x = self.relu(x)
|
294 |
+
x = self.maxpool(x)
|
295 |
+
x = self.layer1(x)
|
296 |
+
|
297 |
+
# the same effect as lda operation in the paper, but save much more memory
|
298 |
+
lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
|
299 |
+
x = self.layer2(x)
|
300 |
+
lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
|
301 |
+
x = self.layer3(x)
|
302 |
+
lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
|
303 |
+
x = self.layer4(x)
|
304 |
+
lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
|
305 |
+
|
306 |
+
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
|
307 |
+
|
308 |
+
out = {}
|
309 |
+
out['hyper_in_feat'] = x
|
310 |
+
out['target_in_vec'] = vec
|
311 |
+
|
312 |
+
return out
|
313 |
+
|
314 |
+
|
315 |
+
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
|
316 |
+
"""Constructs a ResNet-50 model_hyper.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
|
320 |
+
"""
|
321 |
+
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
|
322 |
+
if pretrained:
|
323 |
+
save_model = model_zoo.load_url(model_urls['resnet50'])
|
324 |
+
model_dict = model.state_dict()
|
325 |
+
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
|
326 |
+
model_dict.update(state_dict)
|
327 |
+
model.load_state_dict(model_dict)
|
328 |
+
else:
|
329 |
+
model.apply(weights_init_xavier)
|
330 |
+
return model
|
331 |
+
|
332 |
+
|
333 |
+
def weights_init_xavier(m):
|
334 |
+
classname = m.__class__.__name__
|
335 |
+
# print(classname)
|
336 |
+
# if isinstance(m, nn.Conv2d):
|
337 |
+
if classname.find('Conv') != -1:
|
338 |
+
init.kaiming_normal_(m.weight.data)
|
339 |
+
elif classname.find('Linear') != -1:
|
340 |
+
init.kaiming_normal_(m.weight.data)
|
341 |
+
elif classname.find('BatchNorm2d') != -1:
|
342 |
+
init.uniform_(m.weight.data, 1.0, 0.02)
|
343 |
+
init.constant_(m.bias.data, 0.0)
|
eval/inference_videos.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import os
|
16 |
+
import subprocess
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
|
20 |
+
def inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path):
|
21 |
+
os.makedirs(output_dir, exist_ok=True)
|
22 |
+
video_names = sorted([f for f in os.listdir(input_dir) if f.endswith(".mp4")])
|
23 |
+
for video_name in tqdm(video_names):
|
24 |
+
video_path = os.path.join(input_dir, video_name)
|
25 |
+
audio_path = os.path.join(input_dir, video_name.replace(".mp4", "_audio.wav"))
|
26 |
+
video_out_path = os.path.join(output_dir, video_name.replace(".mp4", "_out.mp4"))
|
27 |
+
inference_command = f"python inference.py --unet_config_path {unet_config_path} --video_path {video_path} --audio_path {audio_path} --video_out_path {video_out_path} --inference_ckpt_path {ckpt_path} --seed 1247"
|
28 |
+
subprocess.run(inference_command, shell=True)
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/cross"
|
33 |
+
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/latentsync_cross"
|
34 |
+
unet_config_path = "configs/unet/unet_latent_16_diffusion.yaml"
|
35 |
+
ckpt_path = "output/unet/train-2024_10_08-16:23:43/checkpoints/checkpoint-1920000.pt"
|
36 |
+
|
37 |
+
inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path)
|
eval/syncnet/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .syncnet_eval import SyncNetEval
|
eval/syncnet/syncnet.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
def save(model, filename):
|
8 |
+
with open(filename, "wb") as f:
|
9 |
+
torch.save(model, f)
|
10 |
+
print("%s saved." % filename)
|
11 |
+
|
12 |
+
|
13 |
+
def load(filename):
|
14 |
+
net = torch.load(filename)
|
15 |
+
return net
|
16 |
+
|
17 |
+
|
18 |
+
class S(nn.Module):
|
19 |
+
def __init__(self, num_layers_in_fc_layers=1024):
|
20 |
+
super(S, self).__init__()
|
21 |
+
|
22 |
+
self.__nFeatures__ = 24
|
23 |
+
self.__nChs__ = 32
|
24 |
+
self.__midChs__ = 32
|
25 |
+
|
26 |
+
self.netcnnaud = nn.Sequential(
|
27 |
+
nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
28 |
+
nn.BatchNorm2d(64),
|
29 |
+
nn.ReLU(inplace=True),
|
30 |
+
nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
|
31 |
+
nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
|
32 |
+
nn.BatchNorm2d(192),
|
33 |
+
nn.ReLU(inplace=True),
|
34 |
+
nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
|
35 |
+
nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
|
36 |
+
nn.BatchNorm2d(384),
|
37 |
+
nn.ReLU(inplace=True),
|
38 |
+
nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
|
39 |
+
nn.BatchNorm2d(256),
|
40 |
+
nn.ReLU(inplace=True),
|
41 |
+
nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
|
42 |
+
nn.BatchNorm2d(256),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
|
45 |
+
nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
|
46 |
+
nn.BatchNorm2d(512),
|
47 |
+
nn.ReLU(),
|
48 |
+
)
|
49 |
+
|
50 |
+
self.netfcaud = nn.Sequential(
|
51 |
+
nn.Linear(512, 512),
|
52 |
+
nn.BatchNorm1d(512),
|
53 |
+
nn.ReLU(),
|
54 |
+
nn.Linear(512, num_layers_in_fc_layers),
|
55 |
+
)
|
56 |
+
|
57 |
+
self.netfclip = nn.Sequential(
|
58 |
+
nn.Linear(512, 512),
|
59 |
+
nn.BatchNorm1d(512),
|
60 |
+
nn.ReLU(),
|
61 |
+
nn.Linear(512, num_layers_in_fc_layers),
|
62 |
+
)
|
63 |
+
|
64 |
+
self.netcnnlip = nn.Sequential(
|
65 |
+
nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
|
66 |
+
nn.BatchNorm3d(96),
|
67 |
+
nn.ReLU(inplace=True),
|
68 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
69 |
+
nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
|
70 |
+
nn.BatchNorm3d(256),
|
71 |
+
nn.ReLU(inplace=True),
|
72 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
|
73 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
74 |
+
nn.BatchNorm3d(256),
|
75 |
+
nn.ReLU(inplace=True),
|
76 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
77 |
+
nn.BatchNorm3d(256),
|
78 |
+
nn.ReLU(inplace=True),
|
79 |
+
nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
|
80 |
+
nn.BatchNorm3d(256),
|
81 |
+
nn.ReLU(inplace=True),
|
82 |
+
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
|
83 |
+
nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
|
84 |
+
nn.BatchNorm3d(512),
|
85 |
+
nn.ReLU(inplace=True),
|
86 |
+
)
|
87 |
+
|
88 |
+
def forward_aud(self, x):
|
89 |
+
|
90 |
+
mid = self.netcnnaud(x)
|
91 |
+
# N x ch x 24 x M
|
92 |
+
mid = mid.view((mid.size()[0], -1))
|
93 |
+
# N x (ch x 24)
|
94 |
+
out = self.netfcaud(mid)
|
95 |
+
|
96 |
+
return out
|
97 |
+
|
98 |
+
def forward_lip(self, x):
|
99 |
+
|
100 |
+
mid = self.netcnnlip(x)
|
101 |
+
mid = mid.view((mid.size()[0], -1))
|
102 |
+
# N x (ch x 24)
|
103 |
+
out = self.netfclip(mid)
|
104 |
+
|
105 |
+
return out
|
106 |
+
|
107 |
+
def forward_lipfeat(self, x):
|
108 |
+
|
109 |
+
mid = self.netcnnlip(x)
|
110 |
+
out = mid.view((mid.size()[0], -1))
|
111 |
+
# N x (ch x 24)
|
112 |
+
|
113 |
+
return out
|
eval/syncnet/syncnet_eval.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy
|
5 |
+
import time, pdb, argparse, subprocess, os, math, glob
|
6 |
+
import cv2
|
7 |
+
import python_speech_features
|
8 |
+
|
9 |
+
from scipy import signal
|
10 |
+
from scipy.io import wavfile
|
11 |
+
from .syncnet import S
|
12 |
+
from shutil import rmtree
|
13 |
+
|
14 |
+
|
15 |
+
# ==================== Get OFFSET ====================
|
16 |
+
|
17 |
+
# Video 25 FPS, Audio 16000HZ
|
18 |
+
|
19 |
+
|
20 |
+
def calc_pdist(feat1, feat2, vshift=10):
|
21 |
+
win_size = vshift * 2 + 1
|
22 |
+
|
23 |
+
feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
|
24 |
+
|
25 |
+
dists = []
|
26 |
+
|
27 |
+
for i in range(0, len(feat1)):
|
28 |
+
|
29 |
+
dists.append(
|
30 |
+
torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
|
31 |
+
)
|
32 |
+
|
33 |
+
return dists
|
34 |
+
|
35 |
+
|
36 |
+
# ==================== MAIN DEF ====================
|
37 |
+
|
38 |
+
|
39 |
+
class SyncNetEval(torch.nn.Module):
|
40 |
+
def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
|
44 |
+
self.device = device
|
45 |
+
|
46 |
+
def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
|
47 |
+
|
48 |
+
self.__S__.eval()
|
49 |
+
|
50 |
+
# ========== ==========
|
51 |
+
# Convert files
|
52 |
+
# ========== ==========
|
53 |
+
|
54 |
+
if os.path.exists(temp_dir):
|
55 |
+
rmtree(temp_dir)
|
56 |
+
|
57 |
+
os.makedirs(temp_dir)
|
58 |
+
|
59 |
+
# temp_video_path = os.path.join(temp_dir, "temp.mp4")
|
60 |
+
# command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
|
61 |
+
# subprocess.call(command, shell=True)
|
62 |
+
|
63 |
+
command = (
|
64 |
+
f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
|
65 |
+
)
|
66 |
+
subprocess.call(command, shell=True, stdout=None)
|
67 |
+
|
68 |
+
command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
|
69 |
+
subprocess.call(command, shell=True, stdout=None)
|
70 |
+
|
71 |
+
# ========== ==========
|
72 |
+
# Load video
|
73 |
+
# ========== ==========
|
74 |
+
|
75 |
+
images = []
|
76 |
+
|
77 |
+
flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
|
78 |
+
flist.sort()
|
79 |
+
|
80 |
+
for fname in flist:
|
81 |
+
img_input = cv2.imread(fname)
|
82 |
+
img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
|
83 |
+
images.append(img_input)
|
84 |
+
|
85 |
+
im = numpy.stack(images, axis=3)
|
86 |
+
im = numpy.expand_dims(im, axis=0)
|
87 |
+
im = numpy.transpose(im, (0, 3, 4, 1, 2))
|
88 |
+
|
89 |
+
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
|
90 |
+
|
91 |
+
# ========== ==========
|
92 |
+
# Load audio
|
93 |
+
# ========== ==========
|
94 |
+
|
95 |
+
sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
|
96 |
+
mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
|
97 |
+
mfcc = numpy.stack([numpy.array(i) for i in mfcc])
|
98 |
+
|
99 |
+
cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
|
100 |
+
cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
|
101 |
+
|
102 |
+
# ========== ==========
|
103 |
+
# Check audio and video input length
|
104 |
+
# ========== ==========
|
105 |
+
|
106 |
+
# if (float(len(audio)) / 16000) != (float(len(images)) / 25):
|
107 |
+
# print(
|
108 |
+
# "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
|
109 |
+
# % (float(len(audio)) / 16000, float(len(images)) / 25)
|
110 |
+
# )
|
111 |
+
|
112 |
+
min_length = min(len(images), math.floor(len(audio) / 640))
|
113 |
+
|
114 |
+
# ========== ==========
|
115 |
+
# Generate video and audio feats
|
116 |
+
# ========== ==========
|
117 |
+
|
118 |
+
lastframe = min_length - 5
|
119 |
+
im_feat = []
|
120 |
+
cc_feat = []
|
121 |
+
|
122 |
+
tS = time.time()
|
123 |
+
for i in range(0, lastframe, batch_size):
|
124 |
+
|
125 |
+
im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
|
126 |
+
im_in = torch.cat(im_batch, 0)
|
127 |
+
im_out = self.__S__.forward_lip(im_in.to(self.device))
|
128 |
+
im_feat.append(im_out.data.cpu())
|
129 |
+
|
130 |
+
cc_batch = [
|
131 |
+
cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
|
132 |
+
]
|
133 |
+
cc_in = torch.cat(cc_batch, 0)
|
134 |
+
cc_out = self.__S__.forward_aud(cc_in.to(self.device))
|
135 |
+
cc_feat.append(cc_out.data.cpu())
|
136 |
+
|
137 |
+
im_feat = torch.cat(im_feat, 0)
|
138 |
+
cc_feat = torch.cat(cc_feat, 0)
|
139 |
+
|
140 |
+
# ========== ==========
|
141 |
+
# Compute offset
|
142 |
+
# ========== ==========
|
143 |
+
|
144 |
+
dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
|
145 |
+
mean_dists = torch.mean(torch.stack(dists, 1), 1)
|
146 |
+
|
147 |
+
min_dist, minidx = torch.min(mean_dists, 0)
|
148 |
+
|
149 |
+
av_offset = vshift - minidx
|
150 |
+
conf = torch.median(mean_dists) - min_dist
|
151 |
+
|
152 |
+
fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
|
153 |
+
# fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
|
154 |
+
fconf = torch.median(mean_dists).numpy() - fdist
|
155 |
+
framewise_conf = signal.medfilt(fconf, kernel_size=9)
|
156 |
+
|
157 |
+
# numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
|
158 |
+
rmtree(temp_dir)
|
159 |
+
return av_offset.item(), min_dist.item(), conf.item()
|
160 |
+
|
161 |
+
def extract_feature(self, opt, videofile):
|
162 |
+
|
163 |
+
self.__S__.eval()
|
164 |
+
|
165 |
+
# ========== ==========
|
166 |
+
# Load video
|
167 |
+
# ========== ==========
|
168 |
+
cap = cv2.VideoCapture(videofile)
|
169 |
+
|
170 |
+
frame_num = 1
|
171 |
+
images = []
|
172 |
+
while frame_num:
|
173 |
+
frame_num += 1
|
174 |
+
ret, image = cap.read()
|
175 |
+
if ret == 0:
|
176 |
+
break
|
177 |
+
|
178 |
+
images.append(image)
|
179 |
+
|
180 |
+
im = numpy.stack(images, axis=3)
|
181 |
+
im = numpy.expand_dims(im, axis=0)
|
182 |
+
im = numpy.transpose(im, (0, 3, 4, 1, 2))
|
183 |
+
|
184 |
+
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
|
185 |
+
|
186 |
+
# ========== ==========
|
187 |
+
# Generate video feats
|
188 |
+
# ========== ==========
|
189 |
+
|
190 |
+
lastframe = len(images) - 4
|
191 |
+
im_feat = []
|
192 |
+
|
193 |
+
tS = time.time()
|
194 |
+
for i in range(0, lastframe, opt.batch_size):
|
195 |
+
|
196 |
+
im_batch = [
|
197 |
+
imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
|
198 |
+
]
|
199 |
+
im_in = torch.cat(im_batch, 0)
|
200 |
+
im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
|
201 |
+
im_feat.append(im_out.data.cpu())
|
202 |
+
|
203 |
+
im_feat = torch.cat(im_feat, 0)
|
204 |
+
|
205 |
+
# ========== ==========
|
206 |
+
# Compute offset
|
207 |
+
# ========== ==========
|
208 |
+
|
209 |
+
print("Compute time %.3f sec." % (time.time() - tS))
|
210 |
+
|
211 |
+
return im_feat
|
212 |
+
|
213 |
+
def loadParameters(self, path):
|
214 |
+
loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
|
215 |
+
|
216 |
+
self_state = self.__S__.state_dict()
|
217 |
+
|
218 |
+
for name, param in loaded_state.items():
|
219 |
+
|
220 |
+
self_state[name].copy_(param)
|
eval/syncnet_detect.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
|
2 |
+
|
3 |
+
import os, pdb, subprocess, glob, cv2
|
4 |
+
import numpy as np
|
5 |
+
from shutil import rmtree
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from scenedetect.video_manager import VideoManager
|
9 |
+
from scenedetect.scene_manager import SceneManager
|
10 |
+
from scenedetect.stats_manager import StatsManager
|
11 |
+
from scenedetect.detectors import ContentDetector
|
12 |
+
|
13 |
+
from scipy.interpolate import interp1d
|
14 |
+
from scipy.io import wavfile
|
15 |
+
from scipy import signal
|
16 |
+
|
17 |
+
from eval.detectors import S3FD
|
18 |
+
|
19 |
+
|
20 |
+
class SyncNetDetector:
|
21 |
+
def __init__(self, device, detect_results_dir="detect_results"):
|
22 |
+
self.s3f_detector = S3FD(device=device)
|
23 |
+
self.detect_results_dir = detect_results_dir
|
24 |
+
|
25 |
+
def __call__(self, video_path: str, min_track=50, scale=False):
|
26 |
+
crop_dir = os.path.join(self.detect_results_dir, "crop")
|
27 |
+
video_dir = os.path.join(self.detect_results_dir, "video")
|
28 |
+
frames_dir = os.path.join(self.detect_results_dir, "frames")
|
29 |
+
temp_dir = os.path.join(self.detect_results_dir, "temp")
|
30 |
+
|
31 |
+
# ========== DELETE EXISTING DIRECTORIES ==========
|
32 |
+
if os.path.exists(crop_dir):
|
33 |
+
rmtree(crop_dir)
|
34 |
+
|
35 |
+
if os.path.exists(video_dir):
|
36 |
+
rmtree(video_dir)
|
37 |
+
|
38 |
+
if os.path.exists(frames_dir):
|
39 |
+
rmtree(frames_dir)
|
40 |
+
|
41 |
+
if os.path.exists(temp_dir):
|
42 |
+
rmtree(temp_dir)
|
43 |
+
|
44 |
+
# ========== MAKE NEW DIRECTORIES ==========
|
45 |
+
|
46 |
+
os.makedirs(crop_dir)
|
47 |
+
os.makedirs(video_dir)
|
48 |
+
os.makedirs(frames_dir)
|
49 |
+
os.makedirs(temp_dir)
|
50 |
+
|
51 |
+
# ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
|
52 |
+
|
53 |
+
if scale:
|
54 |
+
scaled_video_path = os.path.join(video_dir, "scaled.mp4")
|
55 |
+
command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
|
56 |
+
subprocess.run(command, shell=True)
|
57 |
+
video_path = scaled_video_path
|
58 |
+
|
59 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
|
60 |
+
subprocess.run(command, shell=True, stdout=None)
|
61 |
+
|
62 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
|
63 |
+
subprocess.run(command, shell=True, stdout=None)
|
64 |
+
|
65 |
+
command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
|
66 |
+
subprocess.run(command, shell=True, stdout=None)
|
67 |
+
|
68 |
+
faces = self.detect_face(frames_dir)
|
69 |
+
|
70 |
+
scene = self.scene_detect(video_dir)
|
71 |
+
|
72 |
+
# Face tracking
|
73 |
+
alltracks = []
|
74 |
+
|
75 |
+
for shot in scene:
|
76 |
+
if shot[1].frame_num - shot[0].frame_num >= min_track:
|
77 |
+
alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
|
78 |
+
|
79 |
+
# Face crop
|
80 |
+
for ii, track in enumerate(alltracks):
|
81 |
+
self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
|
82 |
+
|
83 |
+
rmtree(temp_dir)
|
84 |
+
|
85 |
+
def scene_detect(self, video_dir):
|
86 |
+
video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
|
87 |
+
stats_manager = StatsManager()
|
88 |
+
scene_manager = SceneManager(stats_manager)
|
89 |
+
# Add ContentDetector algorithm (constructor takes detector options like threshold).
|
90 |
+
scene_manager.add_detector(ContentDetector())
|
91 |
+
base_timecode = video_manager.get_base_timecode()
|
92 |
+
|
93 |
+
video_manager.set_downscale_factor()
|
94 |
+
|
95 |
+
video_manager.start()
|
96 |
+
|
97 |
+
scene_manager.detect_scenes(frame_source=video_manager)
|
98 |
+
|
99 |
+
scene_list = scene_manager.get_scene_list(base_timecode)
|
100 |
+
|
101 |
+
if scene_list == []:
|
102 |
+
scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
|
103 |
+
|
104 |
+
return scene_list
|
105 |
+
|
106 |
+
def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
|
107 |
+
|
108 |
+
iouThres = 0.5 # Minimum IOU between consecutive face detections
|
109 |
+
tracks = []
|
110 |
+
|
111 |
+
while True:
|
112 |
+
track = []
|
113 |
+
for framefaces in scenefaces:
|
114 |
+
for face in framefaces:
|
115 |
+
if track == []:
|
116 |
+
track.append(face)
|
117 |
+
framefaces.remove(face)
|
118 |
+
elif face["frame"] - track[-1]["frame"] <= num_failed_det:
|
119 |
+
iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
|
120 |
+
if iou > iouThres:
|
121 |
+
track.append(face)
|
122 |
+
framefaces.remove(face)
|
123 |
+
continue
|
124 |
+
else:
|
125 |
+
break
|
126 |
+
|
127 |
+
if track == []:
|
128 |
+
break
|
129 |
+
elif len(track) > min_track:
|
130 |
+
|
131 |
+
framenum = np.array([f["frame"] for f in track])
|
132 |
+
bboxes = np.array([np.array(f["bbox"]) for f in track])
|
133 |
+
|
134 |
+
frame_i = np.arange(framenum[0], framenum[-1] + 1)
|
135 |
+
|
136 |
+
bboxes_i = []
|
137 |
+
for ij in range(0, 4):
|
138 |
+
interpfn = interp1d(framenum, bboxes[:, ij])
|
139 |
+
bboxes_i.append(interpfn(frame_i))
|
140 |
+
bboxes_i = np.stack(bboxes_i, axis=1)
|
141 |
+
|
142 |
+
if (
|
143 |
+
max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
|
144 |
+
> min_face_size
|
145 |
+
):
|
146 |
+
tracks.append({"frame": frame_i, "bbox": bboxes_i})
|
147 |
+
|
148 |
+
return tracks
|
149 |
+
|
150 |
+
def detect_face(self, frames_dir, facedet_scale=0.25):
|
151 |
+
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
|
152 |
+
flist.sort()
|
153 |
+
|
154 |
+
dets = []
|
155 |
+
|
156 |
+
for fidx, fname in enumerate(flist):
|
157 |
+
image = cv2.imread(fname)
|
158 |
+
|
159 |
+
image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
160 |
+
bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
|
161 |
+
|
162 |
+
dets.append([])
|
163 |
+
for bbox in bboxes:
|
164 |
+
dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
|
165 |
+
|
166 |
+
return dets
|
167 |
+
|
168 |
+
def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
|
169 |
+
|
170 |
+
flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
|
171 |
+
flist.sort()
|
172 |
+
|
173 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
174 |
+
vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
|
175 |
+
|
176 |
+
dets = {"x": [], "y": [], "s": []}
|
177 |
+
|
178 |
+
for det in track["bbox"]:
|
179 |
+
|
180 |
+
dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
|
181 |
+
dets["y"].append((det[1] + det[3]) / 2) # crop center x
|
182 |
+
dets["x"].append((det[0] + det[2]) / 2) # crop center y
|
183 |
+
|
184 |
+
# Smooth detections
|
185 |
+
dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
|
186 |
+
dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
|
187 |
+
dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
|
188 |
+
|
189 |
+
for fidx, frame in enumerate(track["frame"]):
|
190 |
+
|
191 |
+
cs = crop_scale
|
192 |
+
|
193 |
+
bs = dets["s"][fidx] # Detection box size
|
194 |
+
bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
|
195 |
+
|
196 |
+
image = cv2.imread(flist[frame])
|
197 |
+
|
198 |
+
frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
|
199 |
+
my = dets["y"][fidx] + bsi # BBox center Y
|
200 |
+
mx = dets["x"][fidx] + bsi # BBox center X
|
201 |
+
|
202 |
+
face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
|
203 |
+
|
204 |
+
vOut.write(cv2.resize(face, (224, 224)))
|
205 |
+
|
206 |
+
audiotmp = os.path.join(temp_dir, "audio.wav")
|
207 |
+
audiostart = (track["frame"][0]) / frame_rate
|
208 |
+
audioend = (track["frame"][-1] + 1) / frame_rate
|
209 |
+
|
210 |
+
vOut.release()
|
211 |
+
|
212 |
+
# ========== CROP AUDIO FILE ==========
|
213 |
+
|
214 |
+
command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
|
215 |
+
os.path.join(video_dir, "audio.wav"),
|
216 |
+
audiostart,
|
217 |
+
audioend,
|
218 |
+
audiotmp,
|
219 |
+
)
|
220 |
+
output = subprocess.run(command, shell=True, stdout=None)
|
221 |
+
|
222 |
+
sample_rate, audio = wavfile.read(audiotmp)
|
223 |
+
|
224 |
+
# ========== COMBINE AUDIO AND VIDEO FILES ==========
|
225 |
+
|
226 |
+
command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
|
227 |
+
cropfile,
|
228 |
+
audiotmp,
|
229 |
+
cropfile,
|
230 |
+
)
|
231 |
+
output = subprocess.run(command, shell=True, stdout=None)
|
232 |
+
|
233 |
+
os.remove(cropfile + "t.mp4")
|
234 |
+
|
235 |
+
return {"track": track, "proc_track": dets}
|
236 |
+
|
237 |
+
|
238 |
+
def bounding_box_iou(boxA, boxB):
|
239 |
+
xA = max(boxA[0], boxB[0])
|
240 |
+
yA = max(boxA[1], boxB[1])
|
241 |
+
xB = min(boxA[2], boxB[2])
|
242 |
+
yB = min(boxA[3], boxB[3])
|
243 |
+
|
244 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
245 |
+
|
246 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
247 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
248 |
+
|
249 |
+
iou = interArea / float(boxAArea + boxBArea - interArea)
|
250 |
+
|
251 |
+
return iou
|