import gradio as gr import os import sys import shutil import uuid import subprocess from glob import glob from huggingface_hub import snapshot_download # Download models os.makedirs("checkpoints", exist_ok=True) snapshot_download( repo_id = "chunyu-li/LatentSync", local_dir = "./checkpoints" ) import tempfile from moviepy.editor import VideoFileClip from pydub import AudioSegment def process_video(input_video_path, temp_dir="temp_dir"): """ Crop a given MP4 video to a maximum duration of 10 seconds if it is longer than 10 seconds. Save the new video in the specified folder (default is temp_dir). Args: input_video_path (str): Path to the input video file. temp_dir (str): Directory where the processed video will be saved. Returns: str: Path to the cropped video file. """ # Ensure the temp_dir exists os.makedirs(temp_dir, exist_ok=True) # Load the video video = VideoFileClip(input_video_path) # Determine the output path input_file_name = os.path.basename(input_video_path) output_video_path = os.path.join(temp_dir, f"cropped_{input_file_name}") # Crop the video to 10 seconds if necessary # if video.duration > 10: # video = video.subclip(0, 10) # Write the cropped video to the output path video.write_videofile(output_video_path, codec="libx264", audio_codec="aac") # Return the path to the cropped video return output_video_path def process_audio(file_path, temp_dir): # Load the audio file audio = AudioSegment.from_file(file_path) # Check and cut the audio if longer than 4 seconds max_duration = 8 * 1000 # 4 seconds in milliseconds if len(audio) > max_duration: audio = audio[:max_duration] # Save the processed audio in the temporary directory output_path = os.path.join(temp_dir, "trimmed_audio.wav") audio.export(output_path, format="wav") # Return the path to the trimmed file print(f"Processed audio saved at: {output_path}") return output_path import argparse from omegaconf import OmegaConf import torch from diffusers import AutoencoderKL, DDIMScheduler from latentsync.models.unet import UNet3DConditionModel from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline from diffusers.utils.import_utils import is_xformers_available from accelerate.utils import set_seed from latentsync.whisper.audio2feature import Audio2Feature def main(video_path, audio_path, progress=gr.Progress(track_tqdm=True)): inference_ckpt_path = "checkpoints/latentsync_unet.pt" unet_config_path = "configs/unet/second_stage.yaml" config = OmegaConf.load(unet_config_path) print(f"Input video path: {video_path}") print(f"Input audio path: {audio_path}") print(f"Loaded checkpoint path: {inference_ckpt_path}") is_shared_ui = True if "fffiloni/LatentSync" in os.environ['SPACE_ID'] else False temp_dir = None if is_shared_ui: temp_dir = tempfile.mkdtemp() cropped_video_path = process_video(video_path) print(f"Cropped video saved to: {cropped_video_path}") video_path=cropped_video_path trimmed_audio_path = process_audio(audio_path, temp_dir) print(f"Processed file was stored temporarily at: {trimmed_audio_path}") audio_path=trimmed_audio_path scheduler = DDIMScheduler.from_pretrained("configs") if config.model.cross_attention_dim == 768: whisper_model_path = "checkpoints/whisper/small.pt" elif config.model.cross_attention_dim == 384: whisper_model_path = "checkpoints/whisper/tiny.pt" else: raise NotImplementedError("cross_attention_dim must be 768 or 384") audio_encoder = Audio2Feature(model_path=whisper_model_path, device="cuda", num_frames=config.data.num_frames) vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) vae.config.scaling_factor = 0.18215 vae.config.shift_factor = 0 unet, _ = UNet3DConditionModel.from_pretrained( OmegaConf.to_container(config.model), inference_ckpt_path, # load checkpoint device="cpu", ) unet = unet.to(dtype=torch.float16) # set xformers if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() pipeline = LipsyncPipeline( vae=vae, audio_encoder=audio_encoder, unet=unet, scheduler=scheduler, ).to("cuda") seed = -1 if seed != -1: set_seed(seed) else: torch.seed() print(f"Initial seed: {torch.initial_seed()}") unique_id = str(uuid.uuid4()) video_out_path = f"video_out{unique_id}.mp4" pipeline( video_path=video_path, audio_path=audio_path, video_out_path=video_out_path, video_mask_path=video_out_path.replace(".mp4", "_mask.mp4"), num_frames=config.data.num_frames, num_inference_steps=config.run.inference_steps, guidance_scale=1.0, weight_dtype=torch.float16, width=config.data.resolution, height=config.data.resolution, ) if is_shared_ui: # Clean up the temporary directory if os.path.exists(temp_dir): shutil.rmtree(temp_dir) print(f"Temporary directory {temp_dir} deleted.") return video_out_path css=""" div#col-container{ margin: 0 auto; max-width: 982px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync") gr.Markdown("LatentSync, an end-to-end lip sync framework based on audio conditioned latent diffusion models without any intermediate motion representation, diverging from previous diffusion-based lip sync methods based on pixel space diffusion or two-stage generation.") gr.HTML("""
Duplicate this Space Follow me on HF
""") with gr.Row(): with gr.Column(): video_input = gr.Video(label="Video Control", format="mp4") audio_input = gr.Audio(label="Audio Input", type="filepath") submit_btn = gr.Button("Submit") with gr.Column(): video_result = gr.Video(label="Result") gr.Examples( examples = [ ["assets/demo1_video.mp4", "assets/demo1_audio.wav"], ["assets/demo2_video.mp4", "assets/demo2_audio.wav"], ["assets/demo3_video.mp4", "assets/demo3_audio.wav"], ], inputs = [video_input, audio_input] ) submit_btn.click( fn = main, inputs = [video_input, audio_input], outputs = [video_result] ) demo.queue().launch(show_api=False, show_error=True)