# https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py import torch import torch.nn as nn def save(model, filename): with open(filename, "wb") as f: torch.save(model, f) print("%s saved." % filename) def load(filename): net = torch.load(filename) return net class S(nn.Module): def __init__(self, num_layers_in_fc_layers=1024): super(S, self).__init__() self.__nFeatures__ = 24 self.__nChs__ = 32 self.__midChs__ = 32 self.netcnnaud = nn.Sequential( nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)), nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)), nn.BatchNorm2d(192), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)), nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)), nn.BatchNorm2d(384), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)), nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)), nn.BatchNorm2d(512), nn.ReLU(), ) self.netfcaud = nn.Sequential( nn.Linear(512, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, num_layers_in_fc_layers), ) self.netfclip = nn.Sequential( nn.Linear(512, 512), nn.BatchNorm1d(512), nn.ReLU(), nn.Linear(512, num_layers_in_fc_layers), ) self.netcnnlip = nn.Sequential( nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0), nn.BatchNorm3d(96), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)), nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)), nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)), nn.BatchNorm3d(256), nn.ReLU(inplace=True), nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)), nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0), nn.BatchNorm3d(512), nn.ReLU(inplace=True), ) def forward_aud(self, x): mid = self.netcnnaud(x) # N x ch x 24 x M mid = mid.view((mid.size()[0], -1)) # N x (ch x 24) out = self.netfcaud(mid) return out def forward_lip(self, x): mid = self.netcnnlip(x) mid = mid.view((mid.size()[0], -1)) # N x (ch x 24) out = self.netfclip(mid) return out def forward_lipfeat(self, x): mid = self.netcnnlip(x) out = mid.view((mid.size()[0], -1)) # N x (ch x 24) return out