# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from torch.utils.data import Dataset import torch import random from ..utils.util import gather_video_paths_recursively from ..utils.image_processor import ImageProcessor from ..utils.audio import melspectrogram import math from decord import AudioReader, VideoReader, cpu class SyncNetDataset(Dataset): def __init__(self, data_dir: str, fileslist: str, config): if fileslist != "": with open(fileslist) as file: self.video_paths = [line.rstrip() for line in file] elif data_dir != "": self.video_paths = gather_video_paths_recursively(data_dir) else: raise ValueError("data_dir and fileslist cannot be both empty") self.resolution = config.data.resolution self.num_frames = config.data.num_frames self.mel_window_length = math.ceil(self.num_frames / 5 * 16) self.audio_sample_rate = config.data.audio_sample_rate self.video_fps = config.data.video_fps self.audio_samples_length = int( config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames ) self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half") self.audio_mel_cache_dir = config.data.audio_mel_cache_dir os.makedirs(self.audio_mel_cache_dir, exist_ok=True) def __len__(self): return len(self.video_paths) def read_audio(self, video_path: str): ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate) original_mel = melspectrogram(ar[:].asnumpy().squeeze(0)) return torch.from_numpy(original_mel) def crop_audio_window(self, original_mel, start_index): start_idx = int(80.0 * (start_index / float(self.video_fps))) end_idx = start_idx + self.mel_window_length return original_mel[:, start_idx:end_idx].unsqueeze(0) def get_frames(self, video_reader: VideoReader): total_num_frames = len(video_reader) start_idx = random.randint(0, total_num_frames - self.num_frames) frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int) while True: wrong_start_idx = random.randint(0, total_num_frames - self.num_frames) # wrong_start_idx = random.randint( # max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25) # ) if wrong_start_idx == start_idx: continue # if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames: # continue wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int) break frames = video_reader.get_batch(frames_index).asnumpy() wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy() return frames, wrong_frames, start_idx def worker_init_fn(self, worker_id): # Initialize the face mesh object in each worker process, # because the face mesh object cannot be called in subprocesses self.worker_id = worker_id # setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask)) def __getitem__(self, idx): # image_processor = getattr(self, f"image_processor_{self.worker_id}") while True: try: idx = random.randint(0, len(self) - 1) # Get video file path video_path = self.video_paths[idx] vr = VideoReader(video_path, ctx=cpu(self.worker_id)) if len(vr) < 2 * self.num_frames: continue frames, wrong_frames, start_idx = self.get_frames(vr) mel_cache_path = os.path.join( self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt") ) if os.path.isfile(mel_cache_path): try: original_mel = torch.load(mel_cache_path) except Exception as e: print(f"{type(e).__name__} - {e} - {mel_cache_path}") os.remove(mel_cache_path) original_mel = self.read_audio(video_path) torch.save(original_mel, mel_cache_path) else: original_mel = self.read_audio(video_path) torch.save(original_mel, mel_cache_path) mel = self.crop_audio_window(original_mel, start_idx) if mel.shape[-1] != self.mel_window_length: continue if random.choice([True, False]): y = torch.ones(1).float() chosen_frames = frames else: y = torch.zeros(1).float() chosen_frames = wrong_frames chosen_frames = self.image_processor.process_images(chosen_frames) # chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images( # chosen_frames, affine_transform=True # ) vr.seek(0) # avoid memory leak break except Exception as e: # Handle the exception of face not detcted print(f"{type(e).__name__} - {e} - {video_path}") if "vr" in locals(): vr.seek(0) # avoid memory leak sample = dict(frames=chosen_frames, audio_samples=mel, y=y) return sample