# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np from torch.utils.data import Dataset import torch import random import cv2 from ..utils.image_processor import ImageProcessor, load_fixed_mask from ..utils.audio import melspectrogram from decord import AudioReader, VideoReader, cpu class UNetDataset(Dataset): def __init__(self, train_data_dir: str, config): if config.data.train_fileslist != "": with open(config.data.train_fileslist) as file: self.video_paths = [line.rstrip() for line in file] elif train_data_dir != "": self.video_paths = [] for file in os.listdir(train_data_dir): if file.endswith(".mp4"): self.video_paths.append(os.path.join(train_data_dir, file)) else: raise ValueError("data_dir and fileslist cannot be both empty") self.resolution = config.data.resolution self.num_frames = config.data.num_frames if self.num_frames == 16: self.mel_window_length = 52 elif self.num_frames == 5: self.mel_window_length = 16 else: raise NotImplementedError("Only support 16 and 5 frames now") self.audio_sample_rate = config.data.audio_sample_rate self.video_fps = config.data.video_fps self.mask = config.data.mask self.mask_image = load_fixed_mask(self.resolution) self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet self.audio_mel_cache_dir = config.data.audio_mel_cache_dir os.makedirs(self.audio_mel_cache_dir, exist_ok=True) def __len__(self): return len(self.video_paths) def read_audio(self, video_path: str): ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate) original_mel = melspectrogram(ar[:].asnumpy().squeeze(0)) return torch.from_numpy(original_mel) def crop_audio_window(self, original_mel, start_index): start_idx = int(80.0 * (start_index / float(self.video_fps))) end_idx = start_idx + self.mel_window_length return original_mel[:, start_idx:end_idx].unsqueeze(0) def get_frames(self, video_reader: VideoReader): total_num_frames = len(video_reader) start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2) frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int) while True: wrong_start_idx = random.randint(0, total_num_frames - self.num_frames) if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames: continue wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int) break frames = video_reader.get_batch(frames_index).asnumpy() wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy() return frames, wrong_frames, start_idx def worker_init_fn(self, worker_id): # Initialize the face mesh object in each worker process, # because the face mesh object cannot be called in subprocesses self.worker_id = worker_id setattr( self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image), ) def __getitem__(self, idx): image_processor = getattr(self, f"image_processor_{self.worker_id}") while True: try: idx = random.randint(0, len(self) - 1) # Get video file path video_path = self.video_paths[idx] vr = VideoReader(video_path, ctx=cpu(self.worker_id)) if len(vr) < 3 * self.num_frames: continue continuous_frames, ref_frames, start_idx = self.get_frames(vr) if self.load_audio_data: mel_cache_path = os.path.join( self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt") ) if os.path.isfile(mel_cache_path): try: original_mel = torch.load(mel_cache_path) except Exception as e: print(f"{type(e).__name__} - {e} - {mel_cache_path}") os.remove(mel_cache_path) original_mel = self.read_audio(video_path) torch.save(original_mel, mel_cache_path) else: original_mel = self.read_audio(video_path) torch.save(original_mel, mel_cache_path) mel = self.crop_audio_window(original_mel, start_idx) if mel.shape[-1] != self.mel_window_length: continue else: mel = [] gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images( continuous_frames, affine_transform=False ) if self.mask == "fix_mask": ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False) else: ref = image_processor.process_images(ref_frames) vr.seek(0) # avoid memory leak break except Exception as e: # Handle the exception of face not detcted print(f"{type(e).__name__} - {e} - {video_path}") if "vr" in locals(): vr.seek(0) # avoid memory leak sample = dict( gt=gt, masked_gt=masked_gt, ref=ref, mel=mel, mask=mask, video_path=video_path, start_idx=start_idx, ) return sample