# Adapted from https://github.com/primepake/wav2lip_288x288/blob/master/models/syncnetv2.py # The code here is for ablation study. from torch import nn from torch.nn import functional as F class SyncNetWav2Lip(nn.Module): def __init__(self, act_fn="leaky"): super().__init__() # input image sequences: (15, 128, 256) self.visual_encoder = nn.Sequential( Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), # (128, 256) Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), # (126, 127) Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (63, 64) Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (21, 22) Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (11, 11) Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (6, 6) Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), # (3, 3) Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1) Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"), ) # input audio sequences: (1, 80, 16) self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), # (27, 16) Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (9, 6) Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), # (3, 3) Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn), Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1) Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"), ) def forward(self, image_sequences, audio_sequences): vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1) audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1) vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c) audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c) # Make them unit vectors vision_embeds = F.normalize(vision_embeds, p=2, dim=1) audio_embeds = F.normalize(audio_embeds, p=2, dim=1) return vision_embeds, audio_embeds class Conv2d(nn.Module): def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs): super().__init__(*args, **kwargs) self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout)) if act_fn == "relu": self.act_fn = nn.ReLU() elif act_fn == "tanh": self.act_fn = nn.Tanh() elif act_fn == "silu": self.act_fn = nn.SiLU() elif act_fn == "leaky": self.act_fn = nn.LeakyReLU(0.2, inplace=True) self.residual = residual def forward(self, x): out = self.conv_block(x) if self.residual: out += x return self.act_fn(out)