# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn.functional as F import torch.nn as nn from einops import rearrange from .third_party.VideoMAEv2.utils import load_videomae_model class TREPALoss: def __init__( self, device="cuda", ckpt_path="/mnt/bn/maliva-gen-ai-v2/chunyu.li/checkpoints/vit_g_hybrid_pt_1200e_ssv2_ft.pth", ): self.model = load_videomae_model(device, ckpt_path).eval().to(dtype=torch.float16) self.model.requires_grad_(False) self.bce_loss = nn.BCELoss() def __call__(self, videos_fake, videos_real, loss_type="mse"): batch_size = videos_fake.shape[0] num_frames = videos_fake.shape[2] videos_fake = rearrange(videos_fake.clone(), "b c f h w -> (b f) c h w") videos_real = rearrange(videos_real.clone(), "b c f h w -> (b f) c h w") videos_fake = F.interpolate(videos_fake, size=(224, 224), mode="bilinear") videos_real = F.interpolate(videos_real, size=(224, 224), mode="bilinear") videos_fake = rearrange(videos_fake, "(b f) c h w -> b c f h w", f=num_frames) videos_real = rearrange(videos_real, "(b f) c h w -> b c f h w", f=num_frames) # Because input pixel range is [-1, 1], and model expects pixel range to be [0, 1] videos_fake = (videos_fake / 2 + 0.5).clamp(0, 1) videos_real = (videos_real / 2 + 0.5).clamp(0, 1) feats_fake = self.model.forward_features(videos_fake) feats_real = self.model.forward_features(videos_real) feats_fake = F.normalize(feats_fake, p=2, dim=1) feats_real = F.normalize(feats_real, p=2, dim=1) return F.mse_loss(feats_fake, feats_real) if __name__ == "__main__": # input shape: (b, c, f, h, w) videos_fake = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16) videos_real = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16) trepa_loss = TREPALoss(device="cuda") loss = trepa_loss(videos_fake, videos_real) print(loss)