# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' from functools import partial import math import warnings import numpy as np import collections.abc import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from itertools import repeat def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) def drop_path(x, drop_prob: float = 0.0, training: bool = False): """ Adapted from timm codebase """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output def _cfg(url="", **kwargs): return { "url": url, "num_classes": 400, "input_size": (3, 224, 224), "pool_size": None, "crop_pct": 0.9, "interpolation": "bicubic", "mean": (0.5, 0.5, 0.5), "std": (0.5, 0.5, 0.5), **kwargs, } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class CosAttention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # self.scale = qk_scale or head_dim**-0.5 # DO NOT RENAME [self.scale] (for no weight decay) if qk_scale is None: self.scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) else: self.scale = qk_scale self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) # torch.log(torch.tensor(1. / 0.01)) = 4.6052 logit_scale = torch.clamp(self.scale, max=4.6052).exp() attn = attn * logit_scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0, attn_head_dim=None ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None, cos_attn=False, ): super().__init__() self.norm1 = norm_layer(dim) if cos_attn: self.attn = CosAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, ) else: self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """Image to Patch Embedding""" def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_spatial_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) num_patches = num_spatial_patches * (num_frames // tubelet_size) self.img_size = img_size self.tubelet_size = tubelet_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv3d( in_channels=in_chans, out_channels=embed_dim, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1]), ) def forward(self, x, **kwargs): B, C, T, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # b, c, l -> b, l, c # [1, 1408, 8, 16, 16] -> [1, 1408, 2048] -> [1, 2048, 1408] x = self.proj(x).flatten(2).transpose(1, 2) return x # sin-cos position encoding # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 def get_sinusoid_encoding_table(n_position, d_hid): """Sinusoid position encoding table""" # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) class VisionTransformer(nn.Module): """Vision Transformer with support for patch or hybrid CNN input stage""" def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, head_drop_rate=0.0, norm_layer=nn.LayerNorm, init_values=0.0, use_learnable_pos_emb=False, init_scale=0.0, all_frames=16, tubelet_size=2, use_mean_pooling=True, with_cp=False, cos_attn=False, ): super().__init__() self.num_classes = num_classes # num_features for consistency with other models self.num_features = self.embed_dim = embed_dim self.tubelet_size = tubelet_size self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=all_frames, tubelet_size=tubelet_size, ) num_patches = self.patch_embed.num_patches self.with_cp = with_cp if use_learnable_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) else: # sine-cosine positional embeddings is on the way self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, cos_attn=cos_attn, ) for i in range(depth) ] ) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head_dropout = nn.Dropout(head_drop_rate) self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if use_learnable_pos_emb: trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) self.num_frames = all_frames def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=""): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def interpolate_pos_encoding(self, t): T = 8 t0 = t // self.tubelet_size if T == t0: return self.pos_embed dim = self.pos_embed.shape[-1] patch_pos_embed = self.pos_embed.permute(0, 2, 1).reshape(1, dim, 8, 16, 16) # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 t0 = t0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(t0 / T, 1, 1), mode="trilinear", ) assert int(t0) == patch_pos_embed.shape[-3] patch_pos_embed = patch_pos_embed.reshape(1, dim, -1).permute(0, 2, 1) return patch_pos_embed def forward_features(self, x): # [1, 3, 16, 224, 224] B = x.size(0) T = x.size(2) # [1, 2048, 1408] x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.interpolate_pos_encoding(T).expand(B, -1, -1).type_as(x).to(x.device).clone().detach() x = self.pos_drop(x) for blk in self.blocks: if self.with_cp: x = cp.checkpoint(blk, x) else: x = blk(x) # return self.fc_norm(x) if self.fc_norm is not None: return self.fc_norm(x.mean(1)) else: return self.norm(x[:, 0]) def forward(self, x): x = self.forward_features(x) x = self.head_dropout(x) x = self.head(x) return x def vit_giant_patch14_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48 / 11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs, ) model.default_cfg = _cfg() return model