# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mediapipe as mp from latentsync.utils.util import read_video, gather_video_paths_recursively import os import tqdm from multiprocessing import Pool class FaceDetector: def __init__(self): self.face_detection = mp.solutions.face_detection.FaceDetection( model_selection=0, min_detection_confidence=0.5 ) def detect_face(self, image): # Process the image and detect faces. results = self.face_detection.process(image) if not results.detections: # Face not detected return False if len(results.detections) != 1: return False return True def detect_video(self, video_path): try: video_frames = read_video(video_path, change_fps=False) except Exception as e: print(f"Exception: {e} - {video_path}") return False if len(video_frames) == 0: return False for frame in video_frames: if not self.detect_face(frame): return False return True def close(self): self.face_detection.close() def remove_incorrect_affined(video_path): if not os.path.isfile(video_path): return face_detector = FaceDetector() has_face = face_detector.detect_video(video_path) if not has_face: os.remove(video_path) print(f"Removed: {video_path}") face_detector.close() def remove_incorrect_affined_multiprocessing(input_dir, num_workers): video_paths = gather_video_paths_recursively(input_dir) print(f"Total videos: {len(video_paths)}") print(f"Removing incorrect affined videos in {input_dir} ...") with Pool(num_workers) as pool: for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)): pass if __name__ == "__main__": input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality" num_workers = 50 remove_incorrect_affined_multiprocessing(input_dir, num_workers)