library(shiny) shinyServer(function(input,output,session){ observe({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) updateSelectInput(session, "variable", choices=names(dt)) }) output$inputData <- renderTable({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) dt }) output$statistic <- renderTable({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable res <- data.frame(Media=mean(y), Varianza=var(y), n=length(y)) colnames(res) <- c('Media', 'Varianza', 'Número obs') res }, align='c', bordered = TRUE) output$appPlot <- renderPlot({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable par(mfrow=c(1, 2), bg='gray98') hist(y, col='deepskyblue3', freq=F, las=1, xlab=as.character(input$variable), main='Histograma y densidad', ylab='Densidad') lines(density(y), lwd=4, col='firebrick3') qqnorm(y, las=1, main='QQplot', xlab='Cuantiles teóricos N(0, 1)', pch=19, col='deepskyblue3', ylab=as.character(input$variable)) qqline(y) shapi <- shapiro.test(x=y) legend('topleft', bty='n', col='red', text.col='deepskyblue3', legend=paste('Valor P=', round(shapi$p.value, 2))) }) output$resul1 <- renderText({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable ph <- t.test(x=y, alternative=input$h0, mu=input$mu0, conf.level=input$alfa) paste0('El estadístico de prueba es to=', round(ph$statistic, 2), ' con un valor-P de ', round(ph$p.value, 4), '.') }) output$resul2 <- renderText({ inFile <- input$file1 if(is.null(inFile)) dt <- read.table('means_data.txt', header=T, sep='\t') else dt <- read.csv(inFile$datapath, header=input$header, sep=input$sep) y <- na.omit(dt[, input$variable]) # Para sacar los NA de la variable ph <- t.test(x=y, alternative=input$h0, mu=input$mu0, conf.level=input$alfa) intervalo <- paste("(", round(ph$conf.int[1], digits=4), ", ", round(ph$conf.int[2], digits=4), ").", sep='') paste0('El intervalo de confianza del ', 100*input$alfa, '% para la media poblacional es ', intervalo) }) })