File size: 7,897 Bytes
0130713
c2f0c5c
 
 
f5dac9b
 
bbc879f
 
3d3fc58
 
 
50fbfdd
3d3fc58
50fbfdd
 
f5dac9b
0130713
 
 
 
b60ea35
3d3fc58
0130713
c2f0c5c
b603692
50fbfdd
c2f0c5c
 
 
 
 
50fbfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cab84
 
50fbfdd
 
 
 
 
 
 
c2f0c5c
 
 
 
 
50fbfdd
 
 
 
 
 
 
 
c2f0c5c
f5dac9b
50fbfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5dac9b
50fbfdd
 
 
f5dac9b
 
 
 
 
50fbfdd
f5dac9b
865766a
f5dac9b
50fbfdd
f5dac9b
 
50fbfdd
f5dac9b
50fbfdd
f5dac9b
 
 
 
 
 
320a9e1
3d3fc58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075510e
3d3fc58
 
 
 
 
 
 
 
 
 
50fbfdd
 
 
 
 
 
 
 
 
 
 
 
 
a4730ef
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import streamlit as st
import pandas as pd
from langchain_text_splitters import TokenTextSplitter
from langchain.docstore.document import Document
from torch import cuda
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain_qdrant import FastEmbedSparse, RetrievalMode


# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'


st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("SEARCH IATI Database")
var=st.text_input("enter keyword")


def create_chunks(text):
    """TAKES A TEXT AND CERATES CREATES CHUNKS"""
    # chunk size in terms of token
    text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0)
    texts = text_splitter.split_text(text)
    return texts 

def get_chunks():
    """
    this will read the iati files and create the chunks
    """
    orgas_df = pd.read_csv("iati_files/project_orgas.csv")
    region_df = pd.read_csv("iati_files/project_region.csv")
    sector_df = pd.read_csv("iati_files/project_sector.csv")
    status_df = pd.read_csv("iati_files/project_status.csv")
    texts_df = pd.read_csv("iati_files/project_texts.csv")

    projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
    projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
    giz_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True)

    giz_df.drop(columns= ['orga_abbreviation', 'client',
       'orga_full_name', 'country', 
       'country_flag', 'crs_5_code', 'crs_3_code',
       'sgd_pred_code'], inplace=True)

    #### code for eading the giz_worldwide data
    #giz_df = pd.read_json('iati_files/data_giz_website.json')
    #giz_df = giz_df.rename(columns={'content':'project_description'})
    

    #giz_df['text_size'] = giz_df.apply(lambda x: len((x['project_name'] + x['project_description']).split()), axis=1)
    #giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['project_name'] + x['project_description']),axis=1)
    #giz_df = giz_df.explode(column=['chunks'], ignore_index=True)


    giz_df['text_size'] = giz_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1)
    giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1)
    giz_df = giz_df.explode(column=['chunks'], ignore_index=True)

    placeholder= []
    for i in range(len(giz_df)):
        placeholder.append(Document(page_content= giz_df.loc[i,'chunks'], 
                                metadata={"iati_id": giz_df.loc[i,'iati_id'],
                                        "iati_orga_id":giz_df.loc[i,'iati_orga_id'],
                                        "country_name":str(giz_df.loc[i,'country_name']),
                                        "crs_5_name": giz_df.loc[i,'crs_5_name'],
                                        "crs_3_name": giz_df.loc[i,'crs_3_name'],
                                        "sgd_pred_str":giz_df.loc[i,'sgd_pred_str'],
                                        "status":giz_df.loc[i,'status'],
                                        "title_main":giz_df.loc[i,'title_main'],}))
    return placeholder

    # placeholder= []
    # for i in range(len(giz_df)):
    #     placeholder.append(Document(page_content= giz_df.loc[i,'chunks'], 
    #                             metadata={
    #                                     "title_main":giz_df.loc[i,'title_main'],
    #                                     "country_name":str(giz_df.loc[i,'countries']),
    #                                     "client": giz_df_new.loc[i, 'client'],
    #                                     "language":giz_df_new.loc[i, 'language'],
    #                                     "political_sponsor":giz_df.loc[i, 'poli_trager'],
    #                                     "url": giz_df.loc[i, 'url']
    #                                     #"iati_id": giz_df.loc[i,'iati_id'],
    #                                     #"iati_orga_id":giz_df.loc[i,'iati_orga_id'],
    #                                     #"crs_5_name": giz_df.loc[i,'crs_5_name'],
    #                                     #"crs_3_name": giz_df.loc[i,'crs_3_name'],
    #                                     #"sgd_pred_str":giz_df.loc[i,'sgd_pred_str'],
    #                                     #"status":giz_df.loc[i,'status'],
    #                                     }))
    # return placeholder

def embed_chunks(chunks):
    """
    takes the chunks and does the hybrid embedding for the list of chunks
    """
    embeddings = HuggingFaceEmbeddings(
        model_kwargs = {'device': device},
        encode_kwargs = {'normalize_embeddings': True},
        model_name='BAAI/bge-m3'
    )
    sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
    # placeholder for collection
    print("starting embedding")
    qdrant_collections = {}
    qdrant_collections['iati'] = Qdrant.from_documents(
                chunks,
                embeddings,
                sparse_embeddings = sparse_embeddings,
                path="/data/local_qdrant",
                collection_name='iati',
            )
            
    print(qdrant_collections)
    print("vector embeddings done")
    return qdrant_collections
    
@st.cache_resource    
def get_local_qdrant(): 
    """once the local qdrant server is created this is used to make the connection to exisitng server"""

    qdrant_collections = {}
    embeddings = HuggingFaceEmbeddings(
        model_kwargs = {'device': device},
        encode_kwargs = {'normalize_embeddings': True},
        model_name='BAAI/bge-m3')
    client = QdrantClient(path="/data/local_qdrant") 
    print("Collections in local Qdrant:",client.get_collections())
    qdrant_collections['all'] = Qdrant(client=client, collection_name='all', embeddings=embeddings, )
    return qdrant_collections    

def get_context(vectorstore,query):
    # create metadata filter


    # getting context
    retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", 
                                         search_kwargs={"score_threshold": 0.5, 
                                                        "k": 10,})
#    # re-ranking the retrieved results
#    model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL'))
#   compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K')))
#    compression_retriever = ContextualCompressionRetriever(
#           base_compressor=compressor, base_retriever=retriever
#       )
    context_retrieved = retriever.invoke(query)
    print(f"retrieved paragraphs:{len(context_retrieved)}")

    return context_retrieved

# first we create the chunks for iati documents
chunks = get_chunks()
print("chunking done")

# once the chunks are done, we perform hybrid emebddings
qdrant_collections = embed_chunks(chunks)
print(qdrant_collections.keys())

# vectorstores = get_local_qdrant() 
# vectorstore = vectorstores['all']
# button=st.button("search")
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
if button:
    st.write(f"Found {len(results)} results for query:{var}")

    for i in results: 
        st.subheader(i.metadata['iati_id']+":"+i.metadata['title_main'])
        st.caption(f"Status:{i.metadata['status']}, Country:{i.metadata['country_name']}")
        st.write(i.page_content)
        st.divider()