import streamlit as st import pandas as pd from langchain_text_splitters import TokenTextSplitter from langchain.docstore.document import Document from torch import cuda from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings from langchain_community.vectorstores import Qdrant from qdrant_client import QdrantClient from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import CrossEncoderReranker from langchain_community.cross_encoders import HuggingFaceCrossEncoder device = 'cuda' if cuda.is_available() else 'cpu' st.set_page_config(page_title="SEARCH IATI",layout='wide') st.title("SEARCH IATI Database") var=st.text_input("enter keyword") def create_chunks(text): text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0) texts = text_splitter.split_text(text) return texts def get_chunks(): orgas_df = pd.read_csv("iati_files/project_orgas.csv") region_df = pd.read_csv("iati_files/project_region.csv") sector_df = pd.read_csv("iati_files/project_sector.csv") status_df = pd.read_csv("iati_files/project_status.csv") texts_df = pd.read_csv("iati_files/project_texts.csv") projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner') projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner') giz_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True) giz_df.drop(columns= ['orga_abbreviation', 'client', 'orga_full_name', 'country', 'country_flag', 'crs_5_code', 'crs_3_code', 'sgd_pred_code'], inplace=True) giz_df['text_size'] = giz_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1) giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1) giz_df = giz_df.explode(column=['chunks'], ignore_index=True) placeholder= [] for i in range(len(giz_df)): placeholder.append(Document(page_content= giz_df.loc[i,'chunks'], metadata={"iati_id": giz_df.loc[i,'iati_id'], "iati_orga_id":giz_df.loc[i,'iati_orga_id'], "country_name":str(giz_df.loc[i,'country_name']), "crs_5_name": giz_df.loc[i,'crs_5_name'], "crs_3_name": giz_df.loc[i,'crs_3_name'], "sgd_pred_str":giz_df.loc[i,'sgd_pred_str'], "status":giz_df.loc[i,'status'], "title_main":giz_df.loc[i,'title_main'],})) return placeholder def embed_chunks(chunks): embeddings = HuggingFaceEmbeddings( model_kwargs = {'device': device}, encode_kwargs = {'normalize_embeddings': True}, model_name='BAAI/bge-m3' ) # placeholder for collection print("starting embedding") qdrant_collections = {} qdrant_collections['all'] = Qdrant.from_documents( chunks, embeddings, path="/data/local_qdrant", collection_name='all', ) print(qdrant_collections) print("vector embeddings done") return qdrant_collections @st.cache_resource def get_local_qdrant(): """once the local qdrant server is created this is used to make the connection to exisitng server""" qdrant_collections = {} embeddings = HuggingFaceEmbeddings( model_kwargs = {'device': device}, encode_kwargs = {'normalize_embeddings': True}, model_name='BAAI/bge-m3') client = QdrantClient(path="/data/local_qdrant") print("Collections in local Qdrant:",client.get_collections()) qdrant_collections['all'] = Qdrant(client=client, collection_name='all', embeddings=embeddings, ) return qdrant_collections def get_context(vectorstore,query): # create metadata filter # getting context retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5, "k": 10,}) # # re-ranking the retrieved results # model = HuggingFaceCrossEncoder(model_name=model_config.get('ranker','MODEL')) # compressor = CrossEncoderReranker(model=model, top_n=int(model_config.get('ranker','TOP_K'))) # compression_retriever = ContextualCompressionRetriever( # base_compressor=compressor, base_retriever=retriever # ) context_retrieved = retriever.invoke(query) print(f"retrieved paragraphs:{len(context_retrieved)}") return context_retrieved #chunks = get_chunks() vectorstores = get_local_qdrant() vectorstore = vectorstores['all'] button=st.button("search") results= get_context(vectorstore, f"find the relvant paragraphs for: {var}") if button: st.write(f"Found {len(results)} results for query:{var}") for i in results: st.subheader(i.metadata['iati_id']+":"+i.metadata['title_main']) st.caption(f"Status:{i.metadata['status']}, Country:{i.metadata['country_name']}") st.write(i.page_content) st.divider()