Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,073 Bytes
5620e1f ead9aa7 5620e1f fba1e90 5620e1f fba1e90 5620e1f ec039dd fba1e90 5620e1f ead9aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import re
import logging
import json
from langchain.schema import (
HumanMessage,
SystemMessage,
)
def save_logs(scheduler, JSON_DATASET_PATH, logs) -> None:
""" Every interaction with app saves the log of question and answer,
this is to get the usage statistics of app and evaluate model performances
"""
try:
# We get the timestamp here now because we are simply recording time of logging
current_time = datetime.now().timestamp()
logs["time"] = str(current_time)
# Save feedback (if any)
if feedback:
logs["feedback"] = feedback
logs["record_id"] = str(uuid4())
# Do some reordering to keep things clean (time up front)
field_order = [
"record_id",
"session_id",
"time", # current log time
"session_duration_seconds",
"client_location",
"platform",
"system_prompt",
"sources",
"reports",
"subtype",
"year",
"question",
"retriever",
"endpoint_type",
"reader",
"docs",
"answer",
"feedback"
]
ordered_logs = {k: logs.get(k) for k in field_order if k in logs}
with scheduler.lock:
with open(JSON_DATASET_PATH, 'a') as f:
json.dump(ordered_logs, f)
f.write("\n")
logging.info("logging done")
except Exception as e:
raise
def get_message_template(type, SYSTEM_PROMPT, USER_PROMPT):
if type == 'NVIDIA':
messages = [{"role": "system", "content": SYSTEM_PROMPT},
{"role":"user","content":USER_PROMPT}]
elif type == 'DEDICATED':
messages = [
SystemMessage(content=SYSTEM_PROMPT),
HumanMessage(content=USER_PROMPT),]
else:
messages = None
return messages
def make_html_source(source,i):
"""
takes the text and converts it into html format for display in "source" side tab
"""
meta = source.metadata
content = source.page_content.strip()
name = meta['subtype']
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['subtype']} - Page {int(meta['page'])}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['subtype']}#page={int(meta['page'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">🔗</span>
</a>
</div>
</div>
"""
return card
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def get_client_ip(request=None):
"""Get the client IP address from the request context"""
try:
if request:
# Try different headers that might contain the real IP
ip = request.client.host
# Check for proxy headers
forwarded_for = request.headers.get('X-Forwarded-For')
if forwarded_for:
# X-Forwarded-For can contain multiple IPs - first one is the client
ip = forwarded_for.split(',')[0].strip()
logging.debug(f"Client IP detected: {ip}")
return ip
except Exception as e:
logging.error(f"Error getting client IP: {e}")
return "127.0.0.1"
def get_client_location(ip_address) -> dict | None:
"""Get geolocation info using ipapi.co"""
# Add headers so we don't get blocked...
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
try:
response = requests.get(
f'https://ipapi.co/{ip_address}/json/',
headers=headers,
timeout=5
)
if response.status_code == 200:
data = response.json()
# Add random noise between -0.01 and 0.01 degrees (roughly ±1km)
lat = data.get('latitude')
lon = data.get('longitude')
if lat is not None and lon is not None:
lat += random.uniform(-0.01, 0.01)
lon += random.uniform(-0.01, 0.01)
return {
'city': data.get('city'),
'region': data.get('region'),
'country': data.get('country_name'),
'latitude': lat,
'longitude': lon
}
elif response.status_code == 429:
logging.warning(f"Rate limit exceeded. Response: {response.text}")
return None
else:
logging.error(f"Error: Status code {response.status_code}. Response: {response.text}")
return None
except requests.exceptions.RequestException as e:
logging.error(f"Request failed: {str(e)}")
return None
def get_platform_info(user_agent: str) -> str:
"""Get platform info"""
# Make a best guess at the device type
if any(mobile_keyword in user_agent.lower() for mobile_keyword in ['mobile', 'android', 'iphone', 'ipad', 'ipod']):
platform_info = 'mobile'
else:
platform_info = 'desktop'
return platform_info |