Spaces:
Runtime error
Runtime error
from diffusers import AutoencoderKL, UNet2DConditionModel, LMSDiscreteScheduler | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from tqdm.auto import tqdm | |
from PIL import Image | |
import torch | |
class MingleModel: | |
def __init__(self): | |
# Set device | |
self.torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the autoencoder model which will be used to decode the latents into image space. | |
use_auth_token = "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" | |
self.vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", | |
use_auth_token=use_auth_token).to(self.torch_device) | |
# Load the tokenizer and text encoder to tokenize and encode the text. | |
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token) | |
self.text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", use_auth_token=use_auth_token).to(self.torch_device) | |
# # The UNet model for generating the latents. | |
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet",use_auth_token=use_auth_token).to(self.torch_device) | |
# The noise scheduler | |
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", | |
num_train_timesteps=1000) | |
def tokenizer(self, prompt): | |
return self.tokenizer([prompt], padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, | |
return_tensors="pt") | |
def text_encoder(self, text_input): | |
return self.text_encoder(text_input.input_ids.to(self.torch_device))[0] | |
def latents_to_pil(self, latents): | |
# bath of latents -> list of images | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def generate_with_embs(self, text_embeddings, generator_int=32, num_inference_steps=30, guidance_scale=7.5): | |
height = 512 # default height of Stable Diffusion | |
width = 512 # default width of Stable Diffusion | |
num_inference_steps = num_inference_steps # Number of denoising steps | |
guidance_scale = guidance_scale # Scale for classifier-free guidance | |
generator = torch.manual_seed(generator_int) # Seed generator to create the inital latent noise | |
batch_size = 1 | |
max_length = 77 | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# Prep Scheduler | |
self.scheduler.set_timesteps(num_inference_steps) | |
# Prep latents | |
latents = torch.randn((batch_size, self.unet.in_channels, height // 8, width // 8), generator=generator) | |
latents = latents.to(self.torch_device) | |
latents = latents * self.scheduler.init_noise_sigma | |
# Loop | |
for i, t in tqdm(enumerate(self.scheduler.timesteps)): | |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = self.scheduler.sigmas[i] | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
with torch.no_grad(): | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents).prev_sample | |
return self.latents_to_pil(latents)[0] |