Spaces:
Runtime error
Runtime error
import spaces | |
# from transformers import Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForZeroShotObjectDetection | |
from transformers import Owlv2Processor, Owlv2ForObjectDetection | |
import torch | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to("cuda") | |
owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") | |
# dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base") | |
# dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to("cuda") | |
english_candidate_labels = ["hat", "sunglass", "hair band", "glove", "arm sleeve", "watch", "singlet", "t-shirts", "energy gel", "half pants", "socks", "shoes", "ear phone"] | |
korean_candidate_labels = ["๋ชจ์", "์ฌ๊ธ๋ผ์ค", "ํค์ด๋ฐด๋", "์ฅ๊ฐ", "ํํ ์", "์๊ณ", "์ฑ๊ธ๋ ", "ํฐ์ ์ธ ", "์๋์ง์ ค", "์ผ์ธ ๋ฐ์ง", "์๋ง", "์ ๋ฐ", "์ด์ดํฐ"] | |
english_candidate_labels_string = ",".join(english_candidate_labels) | |
# ์๋ฌธ ๋ ์ด๋ธ์ ํ๊ธ ๋ ์ด๋ธ๋ก ๋งค์นญํ๋ ๋์ ๋๋ฆฌ ์์ฑ | |
label_mapping = dict(zip(english_candidate_labels, korean_candidate_labels)) | |
def infer(img, text_queries, score_threshold, model): | |
if model == "dino": | |
queries="" | |
for query in text_queries: | |
queries += f"{query}. " | |
width, height = img.shape[:2] | |
target_sizes=[(width, height)] | |
inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = dino_model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids, | |
box_threshold=score_threshold, | |
target_sizes=target_sizes) | |
elif model == "owl": | |
size = max(img.shape[:2]) | |
target_sizes = torch.Tensor([[size, size]]) | |
inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = owl_model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes) | |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] | |
result_labels = [] | |
for box, score, label in zip(boxes, scores, labels): | |
box = [int(i) for i in box.tolist()] | |
if score < score_threshold: | |
continue | |
if model == "owl": | |
label = text_queries[label.cpu().item()] | |
result_labels.append((box, label)) | |
elif model == "dino": | |
if label != "": | |
result_labels.append((box, label)) | |
return result_labels | |
# def query_image(img, text_queries, owl_threshold, dino_threshold): | |
def query_image(img, text_queries, owl_threshold, flag_output_korean): | |
text_queries = text_queries | |
text_queries = text_queries.split(",") | |
owl_output = infer(img, text_queries, owl_threshold, "owl") | |
# dino_output = infer(img, text_queries, dino_threshold, "dino") | |
# add - check flag output korean | |
owl_output_final = [] | |
if flag_output_korean: | |
for box, label in owl_output: | |
kor_label = label_mapping[label] | |
owl_output_final.append((box, kor_label)) | |
else: | |
owl_output_final = owl_output | |
# return (img, owl_output), (img, dino_output) | |
return (img, owl_output_final) | |
owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold") | |
# dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold") | |
owl_output = gr.AnnotatedImage(label="OWL Output") | |
# dino_output = gr.AnnotatedImage(label="Grounding DINO Output") | |
demo = gr.Interface( | |
query_image, | |
# inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"), owl_threshold, dino_threshold], | |
inputs=[ | |
gr.Image(label="Input Image"), | |
gr.Textbox(label="Candidate Labels", value=english_candidate_labels_string), | |
owl_threshold, | |
gr.Checkbox(label="Output labels Korean") | |
], | |
# outputs=[owl_output, dino_output], | |
outputs=[owl_output], | |
title="OWLv2 Demo", | |
description="Compare two state-of-the-art zero-shot object detection models [OWLv2](https://huggingface.co/google/owlv2-base-patch16) . Simply enter an image and the objects you want to find with comma, or try one of the examples. Play with the threshold to filter out low confidence predictions in each model.", | |
# examples=[["./bee.jpg", "bee, flower", 0.16, 0.12], ["./cats.png", "cat, fishnet", 0.16, 0.12]] | |
# examples=[["./rs_sample1.jpg", english_candidate_labels_string, 0.16, 0.12], ["./rs_sample2.jpg", english_candidate_labels_string, 0.13, 0.10]] | |
examples=[["./rs_sample1.jpg", english_candidate_labels_string, 0.16, 0.12], ["./rs_sample2.jpg", english_candidate_labels_string, 0.13, False]] | |
) | |
demo.launch(debug=True) |