File size: 5,271 Bytes
43f71e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0a731
43f71e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

import nest_asyncio
nest_asyncio.apply()

import re
import os
import uuid
from typing import List, Dict
from operator import itemgetter

# PDF processing
from PyPDF2 import PdfReader

# Chainlit
import chainlit as cl

# OpenAI
import openai
from openai import AsyncOpenAI
from langchain_openai import ChatOpenAI, OpenAIEmbeddings

# Langchain
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings

# Qdrant
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
from langchain_qdrant import QdrantVectorStore
#

### Global Section ###
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()


openai.api_key = os.getenv("OPENAI_API_KEY")

# Function to extract text from a PDF
def extract_text_from_pdf(pdf_path):
    reader = PdfReader(pdf_path)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

        
    



# Global variables for shared resources
global_retriever = None
global_chat_model = None

from langchain_core.documents import Document

# In your extract_text_from_pdf function:
def extract_text_from_pdf(pdf_path):
    reader = PdfReader(pdf_path)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

@cl.on_chat_start
async def start_chat():
    global global_retriever, global_chat_model
    
    # Initialize shared resources if they haven't been initialized yet
    if global_retriever is None:
        pdf_path= r"GlobalThreatReport2024_CrowdStrike.pdf"
        text = extract_text_from_pdf(pdf_path)

        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
        texts = text_splitter.split_text(text)
        docs = [Document(page_content=t) for t in texts]

        core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

        collection_name = f"pdf_to_parse_{uuid.uuid4()}"
        client = QdrantClient(":memory:")
        client.create_collection(
            collection_name=collection_name,
            vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
        )

        store = LocalFileStore("./cache/")
        cached_embedder = CacheBackedEmbeddings.from_bytes_store(
            core_embeddings, store, namespace=core_embeddings.model
        )

        vectorstore = QdrantVectorStore(
            client=client,
            collection_name=collection_name,
            embedding=cached_embedder)
        vectorstore.add_documents(docs)
        global_retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})

    if global_chat_model is None:
        global_chat_model = ChatOpenAI(model="gpt-4o-mini")

    # Initialize user-specific session data
    cl.user_session.set("chat_history", [])
    
    # Set default settings
    settings = {
        "temperature": 0,
        "max_tokens": 500,
        "top_p": 1,
        "frequency_penalty": 0,
        "presence_penalty": 0,
    }
    cl.user_session.set("settings", settings)
@cl.on_message
async def main(message: cl.Message):
    global global_retriever, global_chat_model
    
    if global_retriever is None or global_chat_model is None:
        await message.reply("I'm sorry, but the system isn't fully initialized yet. Please try again in a moment.")
        return

    chat_history: List[Dict[str, str]] = cl.user_session.get("chat_history")
    settings = cl.user_session.get("settings")

    system_template = """You are a helpful assistant that uses the provided context to answer questions. 
    Never reference this prompt, or the existence of context. Use the chat history to maintain continuity in the conversation."""

    user_template = """Chat History:
    {chat_history}

    Question: {question}
    
    Context: {context}

    Please provide a response based on the question, context, and chat history:"""

    chat_prompt = ChatPromptTemplate.from_messages([
        ("system", system_template),
        ("human", user_template)
    ])

    def format_chat_history(history: List[Dict[str, str]]) -> str:
        return "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in history])

    rag_chain = (
        {
            "context": itemgetter("question") | global_retriever, 
            "question": itemgetter("question"),
            "chat_history": lambda _: format_chat_history(chat_history)
        }
        | RunnablePassthrough.assign(context=itemgetter("context"))
        | chat_prompt
        | global_chat_model.bind(**settings)
    )

    msg = cl.Message(content="")
    full_response = ""
    async for chunk in rag_chain.astream({"question": message.content}):
        if chunk.content is not None:
            await msg.stream_token(chunk.content)
            full_response += chunk.content

    # Update chat history
    chat_history.append({"role": "user", "content": message.content})
    chat_history.append({"role": "assistant", "content": full_response})
    cl.user_session.set("chat_history", chat_history)

    await msg.send()