File size: 3,304 Bytes
eeb8511
908d449
 
eeb8511
 
 
 
 
 
 
 
 
7916190
 
 
eeb8511
 
908d449
12a2b97
 
908d449
eeb8511
 
 
 
7916190
eeb8511
 
908d449
 
 
 
 
 
7916190
eeb8511
 
 
7916190
 
 
 
eeb8511
 
 
7916190
 
 
 
eeb8511
 
908d449
 
 
 
 
 
 
 
 
eeb8511
908d449
 
eeb8511
 
908d449
 
eeb8511
908d449
 
7916190
 
 
 
 
 
 
908d449
eeb8511
 
 
 
7916190
eeb8511
 
 
908d449
eeb8511
 
908d449
 
 
eeb8511
908d449
 
 
7916190
 
908d449
 
 
eeb8511
908d449
 
 
 
 
eeb8511
908d449
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from typing import List, Tuple, Optional

import google.generativeai as genai
import gradio as gr
from PIL import Image

TITLE = """<h1 align="center">Gemini Pro and Pro Vision via API 🚀</h1>"""
DUPLICATE = """
<div style="text-align: center; display: flex; justify-content: center; align-items: center;">
    <a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true">
        <img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;">
    </a>
    <span>Duplicate the Space and run securely with your 
        <a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>.
    </span>
</div>
"""

print("google-generativeai:", genai.__version__)


def predict(
    google_key: str,
    text_prompt: str,
    image_prompt: Optional[Image.Image],
    temperature: float,
    chatbot: List[Tuple[str, str]]
) -> Tuple[str, List[Tuple[str, str]]]:
    if not google_key:
        raise ValueError(
            "GOOGLE_API_KEY is not set. "
            "Please follow the instructions in the README to set it up.")

    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(temperature=temperature)

    if image_prompt is None:
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            text_prompt,
            stream=True,
            generation_config=generation_config)
        response.resolve()
    else:
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            [text_prompt, image_prompt],
            stream=True,
            generation_config=generation_config)
        response.resolve()

    chatbot.append((text_prompt, response.text))
    return "", chatbot


google_key_component = gr.Textbox(
    label="GOOGLE API KEY",
    value="",
    type="password",
    placeholder="...",
    info="You have to provide your own GOOGLE_API_KEY for this app to function properly",
)

image_prompt_component = gr.Image(type="pil", label="Image", scale=1)
chatbot_component = gr.Chatbot(label='Gemini', scale=2)
text_prompt_component = gr.Textbox(
    placeholder="Hi there!",
    label="Ask me anything and press Enter"
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.5,
    step=0.05,
    label="Temperature",
    info="Controls the randomness of the output.")

inputs = [
    google_key_component,
    text_prompt_component,
    image_prompt_component,
    temperature_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(DUPLICATE)
    with gr.Column():
        google_key_component.render()
        with gr.Row():
            image_prompt_component.render()
            chatbot_component.render()
        text_prompt_component.render()
        run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()

    run_button_component.click(
        fn=predict,
        inputs=inputs,
        outputs=[text_prompt_component, chatbot_component],
    )

    text_prompt_component.submit(
        fn=predict,
        inputs=inputs,
        outputs=[text_prompt_component, chatbot_component],
    )

demo.queue(max_size=99).launch(debug=True)