Spaces:
Sleeping
Sleeping
Gbssreejith
commited on
Commit
•
c074598
1
Parent(s):
3f16a66
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,484 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn.parameter import Parameter
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
from load_weights import load_weight
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from transformers import GPT2TokenizerFast
|
11 |
+
import pandas as pd
|
12 |
+
from torch.utils.data import Dataset, DataLoader
|
13 |
+
from transformers import AdamW, get_linear_schedule_with_warmup
|
14 |
+
torch.manual_seed(42)
|
15 |
+
import nltk
|
16 |
+
nltk.download('punkt')
|
17 |
+
|
18 |
+
from transformers import GPT2Tokenizer
|
19 |
+
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler
|
20 |
+
import datetime
|
21 |
+
import time
|
22 |
+
import os
|
23 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
24 |
+
from tqdm import trange
|
25 |
+
import gradio as gr
|
26 |
+
import re
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def gelu(x):
|
32 |
+
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
33 |
+
|
34 |
+
class Conv1D(nn.Module):
|
35 |
+
def __init__(self, nf, nx):
|
36 |
+
super(Conv1D, self).__init__()
|
37 |
+
self.nf = nf
|
38 |
+
w = torch.empty(nx, nf)
|
39 |
+
nn.init.normal_(w, std=0.02)
|
40 |
+
self.weight = Parameter(w)
|
41 |
+
self.bias = Parameter(torch.zeros(nf))
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
size_out = x.size()[:-1] + (self.nf,)
|
45 |
+
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
46 |
+
x = x.view(*size_out)
|
47 |
+
return x
|
48 |
+
|
49 |
+
class LayerNorm(nn.Module):
|
50 |
+
def __init__(self, hidden_size, eps=1e-12):
|
51 |
+
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
52 |
+
"""
|
53 |
+
super(LayerNorm, self).__init__()
|
54 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
55 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
56 |
+
self.variance_epsilon = eps
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
u = x.mean(-1, keepdim=True)
|
60 |
+
s = (x - u).pow(2).mean(-1, keepdim=True)
|
61 |
+
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
62 |
+
return self.weight * x + self.bias
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
class Attention(nn.Module):
|
67 |
+
def __init__(self, nx, n_ctx, config, scale=False):
|
68 |
+
super(Attention, self).__init__()
|
69 |
+
n_state = nx # in Attention: n_state=768 (nx=n_embd)
|
70 |
+
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
71 |
+
assert n_state % config.n_head == 0
|
72 |
+
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
|
73 |
+
self.n_head = config.n_head
|
74 |
+
self.split_size = n_state
|
75 |
+
self.scale = scale
|
76 |
+
self.c_attn = Conv1D(n_state * 3, nx)
|
77 |
+
self.c_proj = Conv1D(n_state, nx)
|
78 |
+
|
79 |
+
def _attn(self, q, k, v):
|
80 |
+
w = torch.matmul(q, k)
|
81 |
+
if self.scale:
|
82 |
+
w = w / math.sqrt(v.size(-1))
|
83 |
+
nd, ns = w.size(-2), w.size(-1)
|
84 |
+
b = self.bias[:, :, ns-nd:ns, :ns]
|
85 |
+
w = w * b - 1e10 * (1 - b)
|
86 |
+
w = nn.Softmax(dim=-1)(w)
|
87 |
+
return torch.matmul(w, v)
|
88 |
+
|
89 |
+
def merge_heads(self, x):
|
90 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
91 |
+
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
|
92 |
+
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
|
93 |
+
|
94 |
+
def split_heads(self, x, k=False):
|
95 |
+
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
|
96 |
+
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
|
97 |
+
if k:
|
98 |
+
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
|
99 |
+
else:
|
100 |
+
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
101 |
+
|
102 |
+
def forward(self, x, layer_past=None):
|
103 |
+
x = self.c_attn(x)
|
104 |
+
query, key, value = x.split(self.split_size, dim=2)
|
105 |
+
query = self.split_heads(query)
|
106 |
+
key = self.split_heads(key, k=True)
|
107 |
+
value = self.split_heads(value)
|
108 |
+
if layer_past is not None:
|
109 |
+
past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below
|
110 |
+
key = torch.cat((past_key, key), dim=-1)
|
111 |
+
value = torch.cat((past_value, value), dim=-2)
|
112 |
+
present = torch.stack((key.transpose(-2, -1), value)) # transpose to have same shapes for stacking
|
113 |
+
a = self._attn(query, key, value)
|
114 |
+
a = self.merge_heads(a)
|
115 |
+
a = self.c_proj(a)
|
116 |
+
return a, present
|
117 |
+
|
118 |
+
|
119 |
+
class MLP(nn.Module):
|
120 |
+
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
|
121 |
+
super(MLP, self).__init__()
|
122 |
+
nx = config.n_embd
|
123 |
+
self.c_fc = Conv1D(n_state, nx)
|
124 |
+
self.c_proj = Conv1D(nx, n_state)
|
125 |
+
self.act = gelu
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
h = self.act(self.c_fc(x))
|
129 |
+
h2 = self.c_proj(h)
|
130 |
+
return h2
|
131 |
+
|
132 |
+
|
133 |
+
class Block(nn.Module):
|
134 |
+
def __init__(self, n_ctx, config, scale=False):
|
135 |
+
super(Block, self).__init__()
|
136 |
+
nx = config.n_embd
|
137 |
+
self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
138 |
+
self.attn = Attention(nx, n_ctx, config, scale)
|
139 |
+
self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
|
140 |
+
self.mlp = MLP(4 * nx, config)
|
141 |
+
|
142 |
+
def forward(self, x, layer_past=None):
|
143 |
+
a, present = self.attn(self.ln_1(x), layer_past=layer_past)
|
144 |
+
x = x + a
|
145 |
+
m = self.mlp(self.ln_2(x))
|
146 |
+
x = x + m
|
147 |
+
return x, present
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
class GPT2Model(nn.Module):
|
152 |
+
def __init__(self, config):
|
153 |
+
super(GPT2Model, self).__init__()
|
154 |
+
self.n_layer = config.n_layer
|
155 |
+
self.n_embd = config.n_embd
|
156 |
+
self.n_vocab = config.vocab_size
|
157 |
+
|
158 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
159 |
+
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
160 |
+
block = Block(config.n_ctx, config, scale=True)
|
161 |
+
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
|
162 |
+
self.ln_f = LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
163 |
+
|
164 |
+
def set_embeddings_weights(self, model_embeddings_weights):
|
165 |
+
embed_shape = model_embeddings_weights.shape
|
166 |
+
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
|
167 |
+
self.decoder.weight = model_embeddings_weights # Tied weights
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None):
|
172 |
+
|
173 |
+
if (input_ids >= self.n_vocab).any():
|
174 |
+
raise ValueError(f"Invalid token ID found in input_ids: {input_ids}")
|
175 |
+
|
176 |
+
# print(f"input_ids: {input_ids}") # Debugging statement
|
177 |
+
# print(f"Max input_id: {input_ids.max().item()}") # Debugging statement
|
178 |
+
# print(f"Min input_id: {input_ids.min().item()}") # Debugging statement
|
179 |
+
|
180 |
+
if past is None:
|
181 |
+
past_length = 0
|
182 |
+
past = [None] * len(self.h)
|
183 |
+
else:
|
184 |
+
past_length = past[0][0].size(-2)
|
185 |
+
if position_ids is None:
|
186 |
+
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long,
|
187 |
+
device=input_ids.device)
|
188 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
189 |
+
|
190 |
+
input_shape = input_ids.size()
|
191 |
+
input_ids = input_ids.view(-1, input_ids.size(-1))
|
192 |
+
position_ids = position_ids.view(-1, position_ids.size(-1))
|
193 |
+
|
194 |
+
inputs_embeds = self.wte(input_ids)
|
195 |
+
position_embeds = self.wpe(position_ids)
|
196 |
+
|
197 |
+
# print(f"inputs_embeds shape: {inputs_embeds.shape}")
|
198 |
+
# print(f"position_embeds shape: {position_embeds.shape}")
|
199 |
+
|
200 |
+
|
201 |
+
if token_type_ids is not None:
|
202 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
|
203 |
+
token_type_embeds = self.wte(token_type_ids)
|
204 |
+
else:
|
205 |
+
token_type_embeds = 0
|
206 |
+
hidden_states = inputs_embeds + position_embeds + token_type_embeds
|
207 |
+
presents = []
|
208 |
+
for block, layer_past in zip(self.h, past):
|
209 |
+
hidden_states, present = block(hidden_states, layer_past)
|
210 |
+
presents.append(present)
|
211 |
+
hidden_states = self.ln_f(hidden_states)
|
212 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
213 |
+
return hidden_states.view(*output_shape), presents
|
214 |
+
|
215 |
+
class GPT2LMHead(nn.Module):
|
216 |
+
def __init__(self, model_embeddings_weights, config):
|
217 |
+
super(GPT2LMHead, self).__init__()
|
218 |
+
self.n_embd = config.n_embd
|
219 |
+
self.set_embeddings_weights(model_embeddings_weights)
|
220 |
+
|
221 |
+
def set_embeddings_weights(self, model_embeddings_weights):
|
222 |
+
embed_shape = model_embeddings_weights.shape
|
223 |
+
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
|
224 |
+
self.decoder.weight = model_embeddings_weights # Tied weights
|
225 |
+
|
226 |
+
def forward(self, hidden_state):
|
227 |
+
# Truncated Language modeling logits (we remove the last token)
|
228 |
+
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
|
229 |
+
lm_logits = self.decoder(hidden_state)
|
230 |
+
return lm_logits
|
231 |
+
|
232 |
+
import torch.nn.functional as F
|
233 |
+
|
234 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
|
235 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
236 |
+
Args:
|
237 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
238 |
+
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
239 |
+
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
240 |
+
filter_value: value to replace filtered logits.
|
241 |
+
"""
|
242 |
+
assert logits.dim() == 2 # batch size x vocabulary size
|
243 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
244 |
+
if top_k > 0:
|
245 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
246 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
247 |
+
logits[indices_to_remove] = filter_value
|
248 |
+
|
249 |
+
if top_p > 0.0:
|
250 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
251 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
252 |
+
|
253 |
+
# Remove tokens with cumulative probability above the threshold
|
254 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
255 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
256 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
257 |
+
sorted_indices_to_remove[..., 0] = 0
|
258 |
+
|
259 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
260 |
+
logits[indices_to_remove] = filter_value
|
261 |
+
return logits
|
262 |
+
|
263 |
+
|
264 |
+
class GPT2LMHeadModel(nn.Module):
|
265 |
+
def __init__(self, config):
|
266 |
+
super(GPT2LMHeadModel, self).__init__()
|
267 |
+
self.transformer = GPT2Model(config)
|
268 |
+
self.lm_head = GPT2LMHead(self.transformer.wte.weight, config)
|
269 |
+
|
270 |
+
def set_tied(self):
|
271 |
+
""" Make sure we are sharing the embeddings
|
272 |
+
"""
|
273 |
+
self.lm_head.set_embeddings_weights(self.transformer.wte.weight)
|
274 |
+
|
275 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):
|
276 |
+
hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)
|
277 |
+
lm_logits = self.lm_head(hidden_states)
|
278 |
+
|
279 |
+
outputs = (lm_logits,presents)
|
280 |
+
|
281 |
+
if lm_labels is not None:
|
282 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
283 |
+
shift_labels = lm_labels[..., 1:].contiguous()
|
284 |
+
loss_fct = nn.CrossEntropyLoss()
|
285 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
286 |
+
outputs = (loss,) + outputs
|
287 |
+
return outputs
|
288 |
+
|
289 |
+
import torch.nn.functional as F
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
def generate(
|
294 |
+
self, input_ids, max_length, temperature=1.0, top_k=0, top_p=0.9, repetition_penalty=1.0, device='cuda'
|
295 |
+
):
|
296 |
+
self.eval()
|
297 |
+
input_ids = input_ids.to(device)
|
298 |
+
batch_size = input_ids.shape[0]
|
299 |
+
past = None
|
300 |
+
|
301 |
+
generated = input_ids
|
302 |
+
with torch.no_grad():
|
303 |
+
for _ in range(max_length):
|
304 |
+
outputs = self(input_ids, past=past)
|
305 |
+
next_token_logits = outputs[0][:, -1, :]
|
306 |
+
past = outputs[1]
|
307 |
+
|
308 |
+
for i in range(batch_size):
|
309 |
+
for token_id in set(generated[i].tolist()):
|
310 |
+
next_token_logits[i, token_id] /= repetition_penalty
|
311 |
+
|
312 |
+
next_token_logits = next_token_logits / temperature
|
313 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
|
314 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
|
315 |
+
generated = torch.cat((generated, next_token), dim=1)
|
316 |
+
|
317 |
+
if (next_token == self.config.eos_token_id).all():
|
318 |
+
break
|
319 |
+
|
320 |
+
input_ids = next_token
|
321 |
+
|
322 |
+
return generated
|
323 |
+
|
324 |
+
|
325 |
+
class GPT2Config(object):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
vocab_size_or_config_json_file=50257,
|
329 |
+
n_positions=1024,
|
330 |
+
n_ctx=1024,
|
331 |
+
n_embd=768,
|
332 |
+
n_layer=12,
|
333 |
+
n_head=12,
|
334 |
+
layer_norm_epsilon=1e-5,
|
335 |
+
initializer_range=0.02,
|
336 |
+
):
|
337 |
+
self.vocab_size = vocab_size_or_config_json_file
|
338 |
+
self.n_ctx = n_ctx
|
339 |
+
self.n_positions = n_positions
|
340 |
+
self.n_embd = n_embd
|
341 |
+
self.n_layer = n_layer
|
342 |
+
self.n_head = n_head
|
343 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
344 |
+
self.initializer_range = initializer_range
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
349 |
+
config = GPT2Config()
|
350 |
+
model = GPT2LMHeadModel(config)
|
351 |
+
state_dict = torch.load(r'C:\vision_model\gpt-2-Pytorch\test\gpt_today\weights\epoch_1.pth', map_location='cpu' if not torch.cuda.is_available() else None)
|
352 |
+
model = load_weight(model, state_dict)
|
353 |
+
model.to(device)
|
354 |
+
print(model)
|
355 |
+
model.eval()
|
356 |
+
|
357 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
358 |
+
tokenizer.pad_token = tokenizer.eos_token
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
|
363 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
364 |
+
Args:
|
365 |
+
logits: logits distribution shape (batch size x vocabulary size)
|
366 |
+
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
367 |
+
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
368 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
369 |
+
"""
|
370 |
+
assert logits.dim() == 2, "Expected logits dimension to be 2 (batch size x vocabulary size)"
|
371 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
372 |
+
if top_k > 0:
|
373 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
374 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
375 |
+
logits[indices_to_remove] = filter_value
|
376 |
+
|
377 |
+
if top_p > 0.0:
|
378 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
379 |
+
cumulative_probs = torch.cumsum(nn.Softmax(dim=-1)(sorted_logits), dim=-1)
|
380 |
+
|
381 |
+
# Remove tokens with cumulative probability above the threshold
|
382 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
383 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
384 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
385 |
+
sorted_indices_to_remove[..., 0] = 0
|
386 |
+
|
387 |
+
# Ensure that the dimensions match
|
388 |
+
if sorted_indices_to_remove.size() != sorted_indices.size():
|
389 |
+
raise ValueError(f"Size mismatch: {sorted_indices_to_remove.size()} vs {sorted_indices.size()}")
|
390 |
+
|
391 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
392 |
+
|
393 |
+
# Expand dimensions to match logits tensor and use scatter_
|
394 |
+
for batch_idx in range(logits.size(0)):
|
395 |
+
logits[batch_idx, indices_to_remove[batch_idx]] = filter_value
|
396 |
+
|
397 |
+
return logits
|
398 |
+
|
399 |
+
# prompt_text = "What is the classical conceptualisation of oxidation and reduction in redox reactions?"
|
400 |
+
# prompt = f"\n<|startoftext|>[WP] {prompt_text} \n[RESPONSE]"
|
401 |
+
# input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
402 |
+
|
403 |
+
|
404 |
+
# max_length = 50
|
405 |
+
# temperature = 0.7
|
406 |
+
# top_k = 50
|
407 |
+
# top_p = 0.95
|
408 |
+
# repetition_penalty = 1.0
|
409 |
+
|
410 |
+
# with torch.no_grad():
|
411 |
+
# for _ in range(max_length):
|
412 |
+
# outputs = model(input_ids)
|
413 |
+
# logits = outputs[0]
|
414 |
+
# next_token_logits = logits[:, -1, :] / temperature
|
415 |
+
|
416 |
+
# # Apply repetition penalty
|
417 |
+
# for i in range(input_ids.size(0)):
|
418 |
+
# for token_id in set(input_ids[i].tolist()):
|
419 |
+
# next_token_logits[0, token_id] /= repetition_penalty
|
420 |
+
|
421 |
+
# # Filter logits using top-k and/or top-p filtering
|
422 |
+
# filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
|
423 |
+
# next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
|
424 |
+
# input_ids = torch.cat([input_ids, next_token], dim=-1).to(device)
|
425 |
+
|
426 |
+
|
427 |
+
# import re
|
428 |
+
# # generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
429 |
+
# # wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:]
|
430 |
+
# print(input_ids[0])
|
431 |
+
|
432 |
+
# generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
433 |
+
# wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:]
|
434 |
+
# print(wp_responses)
|
435 |
+
|
436 |
+
|
437 |
+
# Define the generation function
|
438 |
+
def generate_text(prompt_text, max_length=50, temperature=0.7, top_k=50, top_p=0.95, repetition_penalty=1.0):
|
439 |
+
prompt = f"\n[WP] {prompt_text} \n[RESPONSE]"
|
440 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
441 |
+
|
442 |
+
with torch.no_grad():
|
443 |
+
for _ in range(max_length):
|
444 |
+
outputs = model(input_ids)
|
445 |
+
logits = outputs[0]
|
446 |
+
next_token_logits = logits[:, -1, :] / temperature
|
447 |
+
|
448 |
+
# Apply repetition penalty
|
449 |
+
for i in range(input_ids.size(0)):
|
450 |
+
for token_id in set(input_ids[i].tolist()):
|
451 |
+
next_token_logits[0, token_id] /= repetition_penalty
|
452 |
+
|
453 |
+
# Filter logits using top-k and/or top-p filtering
|
454 |
+
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
|
455 |
+
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
|
456 |
+
input_ids = torch.cat([input_ids, next_token], dim=-1).to(device)
|
457 |
+
|
458 |
+
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
459 |
+
wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", generated_text)[1:]
|
460 |
+
return wp_responses[1]
|
461 |
+
|
462 |
+
# Define the Gradio interface using Blocks
|
463 |
+
with gr.Blocks() as demo:
|
464 |
+
with gr.Row():
|
465 |
+
gr.Markdown("<h1 style='text-align: center'>GPT-2 Text Generator</h1>")
|
466 |
+
with gr.Row():
|
467 |
+
with gr.Column():
|
468 |
+
prompt = gr.Textbox(lines=2, placeholder="Enter prompt here...", label="Prompt")
|
469 |
+
max_length = gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Max Length")
|
470 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature")
|
471 |
+
top_k = gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Top K")
|
472 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.95, label="Top P")
|
473 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Repetition Penalty")
|
474 |
+
generate_button = gr.Button("Generate")
|
475 |
+
with gr.Column():
|
476 |
+
output_text = gr.Textbox(lines=20, label="Generated Text")
|
477 |
+
|
478 |
+
generate_button.click(
|
479 |
+
fn=generate_text,
|
480 |
+
inputs=[prompt, max_length, temperature, top_k, top_p, repetition_penalty],
|
481 |
+
outputs=output_text
|
482 |
+
)
|
483 |
+
|
484 |
+
demo.launch()
|