from flask import Flask, request, jsonify, send_file from flask_cors import CORS import os import subprocess from huggingface_hub import InferenceClient from io import BytesIO from PIL import Image # Initialize the Flask app app = Flask(__name__) CORS(app) # Enable CORS for all routes # Initialize the InferenceClient with your Hugging Face token HF_TOKEN = os.environ.get("HF_TOKEN") # Ensure to set your Hugging Face token in the environment client = InferenceClient(token=HF_TOKEN) # Hardcoded negative prompt NEGATIVE_PROMPT_FINGERS = """2D,missing fingers, extra fingers, elongated fingers, fused fingers, mutated fingers, poorly drawn fingers, disfigured fingers, too many fingers, deformed hands, extra hands, malformed hands, blurry hands, disproportionate fingers""" @app.route('/') def home(): return "Welcome to the Image Background Remover!" # Simple content moderation function def is_prompt_explicit(prompt): # Streamlined keyword list to avoid unnecessary restrictions explicit_keywords = [ "sexual", "porn", "hentai", "fetish", "nude", "provocative", "obscene", "vulgar", "intimate", "kinky", "hardcore", "threesome", "orgy", "masturbation", "genital", "suicide", "self-harm", "depression", "kill myself", "worthless" ] for keyword in explicit_keywords: if keyword.lower() in prompt.lower(): return True return False # Function to generate an image from a text prompt def generate_image(prompt, negative_prompt=None, height=512, width=512, model="stabilityai/stable-diffusion-2-1", num_inference_steps=50, guidance_scale=7.5, seed=None): try: # Generate the image using Hugging Face's inference API with additional parameters image = client.text_to_image( prompt=prompt, negative_prompt=NEGATIVE_PROMPT_FINGERS, height=height, width=width, model=model, num_inference_steps=num_inference_steps, # Control the number of inference steps guidance_scale=guidance_scale, # Control the guidance scale seed=seed # Control the seed for reproducibility ) return image # Return the generated image except Exception as e: print(f"Error generating image: {str(e)}") return None # Flask route for the API endpoint to generate an image @app.route('/generate_image', methods=['POST']) def generate_api(): data = request.get_json() # Extract required fields from the request prompt = data.get('prompt', '') negative_prompt = data.get('negative_prompt', None) height = data.get('height', 1024) # Default height width = data.get('width', 720) # Default width num_inference_steps = data.get('num_inference_steps', 50) # Default number of inference steps guidance_scale = data.get('guidance_scale', 7.5) # Default guidance scale model_name = data.get('model', 'stabilityai/stable-diffusion-2-1') # Default model seed = data.get('seed', None) # Seed for reproducibility, default is None if not prompt: return jsonify({"error": "Prompt is required"}), 400 try: # Check for explicit content if is_prompt_explicit(prompt): # Return the pre-defined "thinkgood.png" image return send_file( "nsfw.jpg", mimetype='image/png', as_attachment=False, download_name='thinkgood.png' ) # Call the generate_image function with the provided parameters image = generate_image(prompt, negative_prompt, height, width, model_name, num_inference_steps, guidance_scale, seed) if image: # Save the image to a BytesIO object img_byte_arr = BytesIO() image.save(img_byte_arr, format='PNG') # Convert the image to PNG img_byte_arr.seek(0) # Move to the start of the byte stream # Send the generated image as a response return send_file( img_byte_arr, mimetype='image/png', as_attachment=False, # Send the file as an attachment download_name='generated_image.png' # The file name for download ) else: return jsonify({"error": "Failed to generate image"}), 500 except Exception as e: print(f"Error in generate_api: {str(e)}") # Log the error return jsonify({"error": str(e)}), 500 # Add this block to make sure your app runs when called if __name__ == "__main__": subprocess.Popen(["python", "wk.py"]) # Start awake.py app.run(host='0.0.0.0', port=7860) # Run directly if needed for testing