Chandranshu Jain commited on
Commit
528fe2d
1 Parent(s): 3096731

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -22,7 +22,7 @@ This chatbot is built using the Retrieval-Augmented Generation (RAG) framework,
22
 
23
  Follow these simple steps to interact with the chatbot:
24
 
25
- 1. **Upload Your Documents**: The system accepts multiple PDF files at once, analyzing the content to provide comprehensive insights.
26
 
27
  2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
28
  """)
@@ -70,7 +70,7 @@ def get_conversational_chain():
70
  def embedding(chunk,query):
71
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
72
  db = Chroma.from_documents(chunk,embeddings, persist_directory="./chroma_db")
73
- docs = db3.similarity_search(query)
74
  chain = get_conversational_chain()
75
  response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
76
  st.write("Reply: ", response["output_text"])
@@ -81,7 +81,7 @@ def embedding(chunk,query):
81
  def main():
82
  st.header("Chat with your pdf💁")
83
  st.title("Menu:")
84
- pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
85
  query = st.text_input("Ask a Question from the PDF Files", key="query")
86
  if st.button("Submit & Process", key="process_button"):
87
  with st.spinner("Processing..."):
 
22
 
23
  Follow these simple steps to interact with the chatbot:
24
 
25
+ 1. **Upload Your Documents**: The system accepts a PDF file at one time, analyzing the content to provide comprehensive insights.
26
 
27
  2. **Ask a Question**: After processing the documents, ask any question related to the content of your uploaded documents for a precise answer.
28
  """)
 
70
  def embedding(chunk,query):
71
  embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
72
  db = Chroma.from_documents(chunk,embeddings, persist_directory="./chroma_db")
73
+ docs = db.similarity_search(query)
74
  chain = get_conversational_chain()
75
  response = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
76
  st.write("Reply: ", response["output_text"])
 
81
  def main():
82
  st.header("Chat with your pdf💁")
83
  st.title("Menu:")
84
+ pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=False, key="pdf_uploader")
85
  query = st.text_input("Ask a Question from the PDF Files", key="query")
86
  if st.button("Submit & Process", key="process_button"):
87
  with st.spinner("Processing..."):