GenAIJake commited on
Commit
fb1af95
·
verified ·
1 Parent(s): 86f96a4

updated-added api endpoint

Browse files
Files changed (1) hide show
  1. app.py +18 -23
app.py CHANGED
@@ -8,6 +8,7 @@ from diffusers import DiffusionPipeline
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
 
11
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
12
 
13
  MAX_SEED = np.iinfo(np.int32).max
@@ -19,11 +20,11 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
19
  seed = random.randint(0, MAX_SEED)
20
  generator = torch.Generator().manual_seed(seed)
21
  image = pipe(
22
- prompt = prompt,
23
- width = width,
24
- height = height,
25
- num_inference_steps = num_inference_steps,
26
- generator = generator,
27
  guidance_scale=0.0
28
  ).images[0]
29
  return image, seed
@@ -34,15 +35,15 @@ examples = [
34
  "an anime illustration of a wiener schnitzel",
35
  ]
36
 
37
- css="""
38
  #col-container {
39
  margin: 0 auto;
40
  max-width: 520px;
41
  }
42
  """
43
 
 
44
  with gr.Blocks(css=css) as demo:
45
-
46
  with gr.Column(elem_id="col-container"):
47
  gr.Markdown(f"""# FLUX.1 [schnell]
48
  12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
@@ -50,7 +51,6 @@ with gr.Blocks(css=css) as demo:
50
  """)
51
 
52
  with gr.Row():
53
-
54
  prompt = gr.Text(
55
  label="Prompt",
56
  show_label=False,
@@ -58,13 +58,11 @@ with gr.Blocks(css=css) as demo:
58
  placeholder="Enter your prompt",
59
  container=False,
60
  )
61
-
62
  run_button = gr.Button("Run", scale=0)
63
 
64
  result = gr.Image(label="Result", show_label=False)
65
 
66
  with gr.Accordion("Advanced Settings", open=False):
67
-
68
  seed = gr.Slider(
69
  label="Seed",
70
  minimum=0,
@@ -72,11 +70,9 @@ with gr.Blocks(css=css) as demo:
72
  step=1,
73
  value=0,
74
  )
75
-
76
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
77
 
78
  with gr.Row():
79
-
80
  width = gr.Slider(
81
  label="Width",
82
  minimum=256,
@@ -84,7 +80,6 @@ with gr.Blocks(css=css) as demo:
84
  step=32,
85
  value=1024,
86
  )
87
-
88
  height = gr.Slider(
89
  label="Height",
90
  minimum=256,
@@ -94,8 +89,6 @@ with gr.Blocks(css=css) as demo:
94
  )
95
 
96
  with gr.Row():
97
-
98
-
99
  num_inference_steps = gr.Slider(
100
  label="Number of inference steps",
101
  minimum=1,
@@ -105,18 +98,20 @@ with gr.Blocks(css=css) as demo:
105
  )
106
 
107
  gr.Examples(
108
- examples = examples,
109
- fn = infer,
110
- inputs = [prompt],
111
- outputs = [result, seed],
112
  cache_examples="lazy"
113
  )
114
 
 
115
  gr.on(
116
  triggers=[run_button.click, prompt.submit],
117
- fn = infer,
118
- inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
119
- outputs = [result, seed]
 
120
  )
121
 
122
- demo.launch()
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
+ # Load the model locally
12
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
 
20
  seed = random.randint(0, MAX_SEED)
21
  generator = torch.Generator().manual_seed(seed)
22
  image = pipe(
23
+ prompt=prompt,
24
+ width=width,
25
+ height=height,
26
+ num_inference_steps=num_inference_steps,
27
+ generator=generator,
28
  guidance_scale=0.0
29
  ).images[0]
30
  return image, seed
 
35
  "an anime illustration of a wiener schnitzel",
36
  ]
37
 
38
+ css = """
39
  #col-container {
40
  margin: 0 auto;
41
  max-width: 520px;
42
  }
43
  """
44
 
45
+ # Define the Gradio interface
46
  with gr.Blocks(css=css) as demo:
 
47
  with gr.Column(elem_id="col-container"):
48
  gr.Markdown(f"""# FLUX.1 [schnell]
49
  12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
 
51
  """)
52
 
53
  with gr.Row():
 
54
  prompt = gr.Text(
55
  label="Prompt",
56
  show_label=False,
 
58
  placeholder="Enter your prompt",
59
  container=False,
60
  )
 
61
  run_button = gr.Button("Run", scale=0)
62
 
63
  result = gr.Image(label="Result", show_label=False)
64
 
65
  with gr.Accordion("Advanced Settings", open=False):
 
66
  seed = gr.Slider(
67
  label="Seed",
68
  minimum=0,
 
70
  step=1,
71
  value=0,
72
  )
 
73
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
74
 
75
  with gr.Row():
 
76
  width = gr.Slider(
77
  label="Width",
78
  minimum=256,
 
80
  step=32,
81
  value=1024,
82
  )
 
83
  height = gr.Slider(
84
  label="Height",
85
  minimum=256,
 
89
  )
90
 
91
  with gr.Row():
 
 
92
  num_inference_steps = gr.Slider(
93
  label="Number of inference steps",
94
  minimum=1,
 
98
  )
99
 
100
  gr.Examples(
101
+ examples=examples,
102
+ fn=infer,
103
+ inputs=[prompt],
104
+ outputs=[result, seed],
105
  cache_examples="lazy"
106
  )
107
 
108
+ # Add API endpoint setup
109
  gr.on(
110
  triggers=[run_button.click, prompt.submit],
111
+ fn=infer,
112
+ inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
113
+ outputs=[result, seed],
114
+ api_name="generate_image" # Expose this function as an API
115
  )
116
 
117
+ demo.launch()