import torch import gradio as gr import json # Use a pipeline as a high-level helper from transformers import pipeline model_path= ("../Models/models--facebook--nllb-200-distilled-600M/snapshots" "/f8d333a098d19b4fd9a8b18f94170487ad3f821d") text_translator = pipeline("translation", model="facebook/nllb-200-distilled-600M", torch_dtype=torch.bfloat16) # text_translator = pipeline("translation", model=model_path, # torch_dtype=torch.bfloat16) # Load the JSON data from the file with open('language.json', 'r') as file: language_data = json.load(file) def get_FLORES_code_from_language(language): for entry in language_data: if entry['Language'].lower() == language.lower(): return entry['FLORES-200 code'] return None def translate_text(text, destination_language): # text = "Hello Friends, How are you?" dest_code= get_FLORES_code_from_language(destination_language) translation = text_translator(text, src_lang="eng_Latn", tgt_lang=dest_code) return translation[0]["translation_text"] gr.close_all() # demo = gr.Interface(fn=summary, inputs="text",outputs="text") demo = gr.Interface(fn=translate_text, inputs=[gr.Textbox(label="Input text to translate",lines=6), gr.Dropdown(["German","French", "Hindi", "Romanian "], label="Select Destination Language")], outputs=[gr.Textbox(label="Translated text",lines=4)], title="@GenAILearniverse Project 4: Multi language translator", description="THIS APPLICATION WILL BE USED TO TRNSLATE ANY ENGLIST TEXT TO MULTIPLE LANGUAGES.") demo.launch()