Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -23,6 +23,60 @@ def generate_response(audio):
|
|
23 |
return response, None, None
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
with gr.Blocks() as block:
|
28 |
gr.HTML(
|
|
|
23 |
return response, None, None
|
24 |
|
25 |
|
26 |
+
from streamer import ParlerTTSStreamer
|
27 |
+
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
28 |
+
import numpy as np
|
29 |
+
import spaces
|
30 |
+
import torch
|
31 |
+
from threading import Thread
|
32 |
+
|
33 |
+
|
34 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
35 |
+
torch_dtype = torch.float16 if device != "cpu" else torch.float32
|
36 |
+
|
37 |
+
repo_id = "parler-tts/parler_tts_mini_v0.1"
|
38 |
+
|
39 |
+
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
|
40 |
+
|
41 |
+
model = ParlerTTSForConditionalGeneration.from_pretrained(
|
42 |
+
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
|
43 |
+
).to(device)
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
46 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
|
47 |
+
|
48 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
49 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
50 |
+
|
51 |
+
@spaces.GPU
|
52 |
+
def read_response(answer):
|
53 |
+
|
54 |
+
play_steps_in_s = 2.0
|
55 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
56 |
+
|
57 |
+
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
|
58 |
+
description_tokens = tokenizer(description, return_tensors="pt").to(device)
|
59 |
+
|
60 |
+
streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
|
61 |
+
prompt = tokenizer(answer, return_tensors="pt").to(device)
|
62 |
+
|
63 |
+
generation_kwargs = dict(
|
64 |
+
input_ids=description_tokens.input_ids,
|
65 |
+
prompt_input_ids=prompt.input_ids,
|
66 |
+
streamer=streamer,
|
67 |
+
do_sample=True,
|
68 |
+
temperature=1.0,
|
69 |
+
min_new_tokens=10,
|
70 |
+
)
|
71 |
+
|
72 |
+
set_seed(42)
|
73 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
74 |
+
thread.start()
|
75 |
+
|
76 |
+
for new_audio in streamer:
|
77 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
78 |
+
yield answer, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
|
79 |
+
|
80 |
|
81 |
with gr.Blocks() as block:
|
82 |
gr.HTML(
|