File size: 3,027 Bytes
88b7229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import os
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
import clip
from PIL import Image, ImageFile
import gradio as gr

# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
    def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
        super().__init__()
        self.input_size = input_size
        self.xcol = xcol
        self.ycol = ycol
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            #nn.ReLU(),
            nn.Dropout(0.1),

            nn.Linear(64, 16),
            #nn.ReLU(),

            nn.Linear(16, 1)
        )

    def forward(self, x):
        return self.layers(x)

    def training_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def validation_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

def normalized(a, axis=-1, order=2):
    import numpy as np  # pylint: disable=import-outside-toplevel

    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2 == 0] = 1
    return a / np.expand_dims(l2, axis)

def load_models():
    model = MLP(768)
    s = torch.load("sac+logos+ava1-l14-linearMSE.pth")

    model.load_state_dict(s)
    model.to("cuda")
    model.eval()

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model2, preprocess = clip.load("ViT-L/14", device=device)

    model_dict = {}
    model_dict['classifier'] = model
    model_dict['clip_model'] = model2
    model_dict['clip_preprocess'] = preprocess
    model_dict['device'] = device

    return model_dict

def predict(image):
    image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device'])
    with torch.no_grad():
        image_features = model_dict['clip_model'].encode_image(image_input)
        im_emb_arr = normalized(image_features.detach().cpu().numpy())
        prediction = model_dict['classifier'](torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor))
    score = prediction.item()

    return {'aesthetic score': score}

if __name__ == '__main__':
    print('\tinit models')

    global model_dict

    model_dict = load_models()

    inputs = [gr.inputs.Image(type='pil', label='Image')]

    outputs = gr.outputs.JSON()

    title = 'image aesthetic predictor'

    gr.Interface(predict,
                 inputs,
                 outputs,
                 title=title,
                 ).launch()