File size: 4,375 Bytes
88b7229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf780e
 
 
 
88b7229
 
ddf780e
88b7229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf780e
 
 
 
 
 
 
 
88b7229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf780e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import numpy as np
import torch
import pytorch_lightning as pl
import torch.nn as nn
import clip
from PIL import Image, ImageFile
import gradio as gr

# if you changed the MLP architecture during training, change it also here:
class MLP(pl.LightningModule):
    def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
        super().__init__()
        self.input_size = input_size
        self.xcol = xcol
        self.ycol = ycol
        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            #nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            #nn.ReLU(),
            nn.Dropout(0.1),

            nn.Linear(64, 16),
            #nn.ReLU(),

            nn.Linear(16, 1)
        )

    def forward(self, x):
        return self.layers(x)

    def training_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def validation_step(self, batch, batch_idx):
        x = batch[self.xcol]
        y = batch[self.ycol].reshape(-1, 1)
        x_hat = self.layers(x)
        loss = F.mse_loss(x_hat, y)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

def normalized(a, axis=-1, order=2):
    import numpy as np  # pylint: disable=import-outside-toplevel

    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2 == 0] = 1
    return a / np.expand_dims(l2, axis)

def load_models():
    model = MLP(768)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    s = torch.load("sac+logos+ava1-l14-linearMSE.pth", map_location=device)

    model.load_state_dict(s)
    model.to(device)
    model.eval()

    model2, preprocess = clip.load("ViT-L/14", device=device)

    model_dict = {}
    model_dict['classifier'] = model
    model_dict['clip_model'] = model2
    model_dict['clip_preprocess'] = preprocess
    model_dict['device'] = device

    return model_dict

def predict(image):
    image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device'])
    with torch.no_grad():
        image_features = model_dict['clip_model'].encode_image(image_input)
        if model_dict['device'] == 'cuda':
            im_emb_arr = normalized(image_features.detach().cpu().numpy())
            im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor)
        else:
            im_emb_arr = normalized(image_features.detach().numpy())
            im_emb = torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.FloatTensor)

        prediction = model_dict['classifier'](im_emb)
    score = prediction.item()

    return {'aesthetic score': score}

if __name__ == '__main__':
    print('\tinit models')

    global model_dict

    model_dict = load_models()

    inputs = [gr.inputs.Image(type='pil', label='Image')]

    outputs = gr.outputs.JSON()

    title = 'image aesthetic predictor'

    examples = ['example1.jpg', 'example2.jpg', 'example3.jpg']

    description = """
    # Image Aesthetic Predictor Demo
    This model (Image Aesthetic Predictor) is trained by LAION Team. See [https://github.com/christophschuhmann/improved-aesthetic-predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor)
    1. This model is desgined by adding five MLP layers on top of (frozen) CLIP ViT-L/14 and only the MLP layers are fine-tuned with a lot of images by a regression loss term such as MSE and MAE.
    2. Output is bounded from 0 to 10. The higher the better.
    """

    article = "<p style='text-align: center'><a href='https://laion.ai/blog/laion-aesthetics/'>LAION aeshetics blog post</a></p>"

    with gr.Blocks() as demo:
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type='pil', label='Input image')
                submit_botton = gr.Button('Submit')
            json_output = gr.JSON(label='Output')
        submit_botton.click(predict, inputs=image_input, outputs=json_output)
        gr.Examples(examples=examples, inputs=image_input)
        gr.HTML(article)
    demo.launch()