Spaces:
Sleeping
Sleeping
Kieran Gookey
commited on
Commit
·
8b6399b
1
Parent(s):
2ee7baf
Added new streamlit app
Browse files- app.py +52 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from io import StringIO
|
4 |
+
from llama_index.llms import HuggingFaceInferenceAPI
|
5 |
+
from llama_index.embeddings import HuggingFaceInferenceAPIEmbedding
|
6 |
+
from llama_index import ServiceContext, VectorStoreIndex
|
7 |
+
from llama_index.schema import Document
|
8 |
+
import uuid
|
9 |
+
from llama_index.vector_stores.types import MetadataFilters, ExactMatchFilter
|
10 |
+
|
11 |
+
inference_api_key = st.secrets["INFRERENCE_API_TOKEN"]
|
12 |
+
|
13 |
+
llm = HuggingFaceInferenceAPI(
|
14 |
+
model_name="mistralai/Mistral-7B-Instruct-v0.2", token=inference_api_key)
|
15 |
+
|
16 |
+
embed_model = HuggingFaceInferenceAPIEmbedding(
|
17 |
+
model_name="Gooly/gte-small-en-fine-tuned-e-commerce",
|
18 |
+
token=inference_api_key,
|
19 |
+
model_kwargs={"device": ""},
|
20 |
+
encode_kwargs={"normalize_embeddings": True},
|
21 |
+
)
|
22 |
+
|
23 |
+
service_context = ServiceContext.from_defaults(
|
24 |
+
embed_model=embed_model, llm=llm)
|
25 |
+
|
26 |
+
html_file = st.file_uploader("Upload a html file", type=["html"])
|
27 |
+
|
28 |
+
if html_file is not None:
|
29 |
+
stringio = StringIO(html_file.getvalue().decode("utf-8"))
|
30 |
+
st.write(stringio)
|
31 |
+
|
32 |
+
string_data = stringio.read()
|
33 |
+
st.write(string_data)
|
34 |
+
|
35 |
+
document_id = uuid.uuid4()
|
36 |
+
|
37 |
+
document = Document(text=string_data)
|
38 |
+
document.metadata["id"] = document_id
|
39 |
+
documents = [document]
|
40 |
+
|
41 |
+
filters = MetadataFilters(
|
42 |
+
filters=[ExactMatchFilter(key="id", value=document_id)])
|
43 |
+
|
44 |
+
index = VectorStoreIndex.from_documents(
|
45 |
+
documents, show_progress=True, metadata={"source": "HTML"}, service_context=service_context)
|
46 |
+
|
47 |
+
query_engine = index.as_query_engine(
|
48 |
+
filters=filters, service_context=service_context)
|
49 |
+
|
50 |
+
response = query_engine.query("What is the current price of this product?")
|
51 |
+
|
52 |
+
st.write(response)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
llama_index
|
3 |
+
uuid
|