Spaces:
Running
Running
Gopikanth123
commited on
Update main.py
Browse files
main.py
CHANGED
@@ -5,43 +5,20 @@ from llama_index.core import StorageContext, load_index_from_storage, VectorStor
|
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from huggingface_hub import InferenceClient
|
|
|
|
|
8 |
|
9 |
# Ensure HF_TOKEN is set
|
10 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
11 |
if not HF_TOKEN:
|
12 |
raise ValueError("HF_TOKEN environment variable not set.")
|
13 |
|
14 |
-
repo_id = "
|
15 |
llm_client = InferenceClient(
|
16 |
model=repo_id,
|
17 |
token=HF_TOKEN,
|
18 |
)
|
19 |
|
20 |
-
# Configure Llama index settings
|
21 |
-
# Settings.llm = HuggingFaceInferenceAPI(
|
22 |
-
# model_name=repo_id,
|
23 |
-
# tokenizer_name=repo_id,
|
24 |
-
# context_window=3000,
|
25 |
-
# token=HF_TOKEN,
|
26 |
-
# max_new_tokens=512,
|
27 |
-
# generate_kwargs={"temperature": 0.1},
|
28 |
-
# )
|
29 |
-
# Settings.embed_model = HuggingFaceEmbedding(
|
30 |
-
# model_name="BAAI/bge-small-en-v1.5"
|
31 |
-
# )
|
32 |
-
# # Configure Llama index settings
|
33 |
-
# Settings.llm = HuggingFaceInferenceAPI(
|
34 |
-
# model_name="xlm-roberta-base",
|
35 |
-
# tokenizer_name="xlm-roberta-base",
|
36 |
-
# context_window=3000,
|
37 |
-
# token=HF_TOKEN,
|
38 |
-
# max_new_tokens=512,
|
39 |
-
# generate_kwargs={"temperature": 0.1},
|
40 |
-
# )
|
41 |
-
|
42 |
-
# Settings.embed_model = HuggingFaceEmbedding(
|
43 |
-
# model_name="sentence-transformers/paraphrase-xlm-r-100langs-v1"
|
44 |
-
# )
|
45 |
# Configure Llama index settings
|
46 |
Settings.llm = HuggingFaceInferenceAPI(
|
47 |
model_name=repo_id,
|
@@ -51,11 +28,18 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
51 |
max_new_tokens=512,
|
52 |
generate_kwargs={"temperature": 0.1},
|
53 |
)
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
)
|
58 |
|
|
|
|
|
|
|
|
|
59 |
PERSIST_DIR = "db"
|
60 |
PDF_DIRECTORY = 'data'
|
61 |
|
@@ -83,42 +67,29 @@ def data_ingestion_from_directory():
|
|
83 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
84 |
|
85 |
def handle_query(query):
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# """
|
96 |
-
# )
|
97 |
-
# ]
|
98 |
-
chat_text_qa_msgs = [
|
99 |
-
(
|
100 |
-
"user",
|
101 |
-
"""
|
102 |
-
You are the Taj Hotel chatbot, known as Taj Hotel Helper.
|
103 |
-
Your goal is to provide accurate and professional answers to
|
104 |
-
user queries about the Taj Hotel in the language they use:
|
105 |
-
English, Telugu, or Hindi. Always respond clearly and concisely,
|
106 |
-
ideally within 10-15 words. If you don't know the answer, say so politely.
|
107 |
|
108 |
-
Context:
|
109 |
-
{context_str}
|
110 |
|
111 |
-
User's Question:
|
112 |
-
{query_str}
|
113 |
|
114 |
-
Language-Specific Guidance:
|
115 |
-
- For English: Respond in English.
|
116 |
-
- For Telugu: తెలుగు లో సమాధానం ఇవ్వండి.
|
117 |
-
- For Hindi: हिंदी में उत्तर दें.
|
118 |
-
"""
|
119 |
-
)
|
120 |
]
|
121 |
-
|
122 |
|
123 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
124 |
|
|
|
5 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
from huggingface_hub import InferenceClient
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
|
10 |
|
11 |
# Ensure HF_TOKEN is set
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
14 |
raise ValueError("HF_TOKEN environment variable not set.")
|
15 |
|
16 |
+
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
17 |
llm_client = InferenceClient(
|
18 |
model=repo_id,
|
19 |
token=HF_TOKEN,
|
20 |
)
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Configure Llama index settings
|
23 |
Settings.llm = HuggingFaceInferenceAPI(
|
24 |
model_name=repo_id,
|
|
|
28 |
max_new_tokens=512,
|
29 |
generate_kwargs={"temperature": 0.1},
|
30 |
)
|
31 |
+
# Settings.embed_model = HuggingFaceEmbedding(
|
32 |
+
# model_name="BAAI/bge-small-en-v1.5"
|
33 |
+
# )
|
34 |
+
# Replace the embedding model with XLM-R
|
35 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
36 |
+
model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
37 |
)
|
38 |
|
39 |
+
# Configure tokenizer and model if required
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
41 |
+
model = AutoModel.from_pretrained("xlm-roberta-base")
|
42 |
+
|
43 |
PERSIST_DIR = "db"
|
44 |
PDF_DIRECTORY = 'data'
|
45 |
|
|
|
67 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
68 |
|
69 |
def handle_query(query):
|
70 |
+
chat_text_qa_msgs = [
|
71 |
+
(
|
72 |
+
"user",
|
73 |
+
"""
|
74 |
+
You are the Taj Hotel chatbot, known as Taj Hotel Helper.
|
75 |
+
Your goal is to provide accurate and professional answers to
|
76 |
+
user queries about the Taj Hotel in the language they use:
|
77 |
+
English, Telugu, or Hindi. Always respond clearly and concisely,
|
78 |
+
ideally within 10-15 words. If you don't know the answer, say so politely.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
Context:
|
81 |
+
{context_str}
|
82 |
|
83 |
+
User's Question:
|
84 |
+
{query_str}
|
85 |
|
86 |
+
Language-Specific Guidance:
|
87 |
+
- For English: Respond in English.
|
88 |
+
- For Telugu: తెలుగు లో సమాధానం ఇవ్వండి.
|
89 |
+
- For Hindi: हिंदी में उत्तर दें.
|
90 |
+
"""
|
91 |
+
)
|
92 |
]
|
|
|
93 |
|
94 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
95 |
|