Gopikanth123 commited on
Commit
620dd85
·
verified ·
1 Parent(s): 0e3c01c

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +32 -61
main.py CHANGED
@@ -5,43 +5,20 @@ from llama_index.core import StorageContext, load_index_from_storage, VectorStor
5
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
  from huggingface_hub import InferenceClient
 
 
8
 
9
  # Ensure HF_TOKEN is set
10
  HF_TOKEN = os.getenv("HF_TOKEN")
11
  if not HF_TOKEN:
12
  raise ValueError("HF_TOKEN environment variable not set.")
13
 
14
- repo_id = "FacebookAI/xlm-roberta-base"
15
  llm_client = InferenceClient(
16
  model=repo_id,
17
  token=HF_TOKEN,
18
  )
19
 
20
- # Configure Llama index settings
21
- # Settings.llm = HuggingFaceInferenceAPI(
22
- # model_name=repo_id,
23
- # tokenizer_name=repo_id,
24
- # context_window=3000,
25
- # token=HF_TOKEN,
26
- # max_new_tokens=512,
27
- # generate_kwargs={"temperature": 0.1},
28
- # )
29
- # Settings.embed_model = HuggingFaceEmbedding(
30
- # model_name="BAAI/bge-small-en-v1.5"
31
- # )
32
- # # Configure Llama index settings
33
- # Settings.llm = HuggingFaceInferenceAPI(
34
- # model_name="xlm-roberta-base",
35
- # tokenizer_name="xlm-roberta-base",
36
- # context_window=3000,
37
- # token=HF_TOKEN,
38
- # max_new_tokens=512,
39
- # generate_kwargs={"temperature": 0.1},
40
- # )
41
-
42
- # Settings.embed_model = HuggingFaceEmbedding(
43
- # model_name="sentence-transformers/paraphrase-xlm-r-100langs-v1"
44
- # )
45
  # Configure Llama index settings
46
  Settings.llm = HuggingFaceInferenceAPI(
47
  model_name=repo_id,
@@ -51,11 +28,18 @@ Settings.llm = HuggingFaceInferenceAPI(
51
  max_new_tokens=512,
52
  generate_kwargs={"temperature": 0.1},
53
  )
54
-
55
- Settings.embed_model = HuggingFaceEmbedding(
56
- model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" # Updated model name
 
 
 
57
  )
58
 
 
 
 
 
59
  PERSIST_DIR = "db"
60
  PDF_DIRECTORY = 'data'
61
 
@@ -83,42 +67,29 @@ def data_ingestion_from_directory():
83
  index.storage_context.persist(persist_dir=PERSIST_DIR)
84
 
85
  def handle_query(query):
86
- # chat_text_qa_msgs = [
87
- # (
88
- # "user",
89
- # """
90
- # You are the Taj Hotel chatbot, known as Taj Hotel Helper. Your goal is to provide accurate and professional answers to user queries based on the information available about the Taj Hotel. Always respond clearly and concisely, ideally within 10-15 words. If you don't know the answer, say so politely.
91
- # Context:
92
- # {context_str}
93
- # User's Question:
94
- # {query_str}
95
- # """
96
- # )
97
- # ]
98
- chat_text_qa_msgs = [
99
- (
100
- "user",
101
- """
102
- You are the Taj Hotel chatbot, known as Taj Hotel Helper.
103
- Your goal is to provide accurate and professional answers to
104
- user queries about the Taj Hotel in the language they use:
105
- English, Telugu, or Hindi. Always respond clearly and concisely,
106
- ideally within 10-15 words. If you don't know the answer, say so politely.
107
 
108
- Context:
109
- {context_str}
110
 
111
- User's Question:
112
- {query_str}
113
 
114
- Language-Specific Guidance:
115
- - For English: Respond in English.
116
- - For Telugu: తెలుగు లో సమాధానం ఇవ్వండి.
117
- - For Hindi: हिंदी में उत्तर दें.
118
- """
119
- )
120
  ]
121
-
122
 
123
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
124
 
 
5
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
6
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
7
  from huggingface_hub import InferenceClient
8
+ from transformers import AutoTokenizer, AutoModel
9
+
10
 
11
  # Ensure HF_TOKEN is set
12
  HF_TOKEN = os.getenv("HF_TOKEN")
13
  if not HF_TOKEN:
14
  raise ValueError("HF_TOKEN environment variable not set.")
15
 
16
+ repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
17
  llm_client = InferenceClient(
18
  model=repo_id,
19
  token=HF_TOKEN,
20
  )
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  # Configure Llama index settings
23
  Settings.llm = HuggingFaceInferenceAPI(
24
  model_name=repo_id,
 
28
  max_new_tokens=512,
29
  generate_kwargs={"temperature": 0.1},
30
  )
31
+ # Settings.embed_model = HuggingFaceEmbedding(
32
+ # model_name="BAAI/bge-small-en-v1.5"
33
+ # )
34
+ # Replace the embedding model with XLM-R
35
+ Settings.embed_model = HuggingFaceEmbedding(
36
+ model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
37
  )
38
 
39
+ # Configure tokenizer and model if required
40
+ tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
41
+ model = AutoModel.from_pretrained("xlm-roberta-base")
42
+
43
  PERSIST_DIR = "db"
44
  PDF_DIRECTORY = 'data'
45
 
 
67
  index.storage_context.persist(persist_dir=PERSIST_DIR)
68
 
69
  def handle_query(query):
70
+ chat_text_qa_msgs = [
71
+ (
72
+ "user",
73
+ """
74
+ You are the Taj Hotel chatbot, known as Taj Hotel Helper.
75
+ Your goal is to provide accurate and professional answers to
76
+ user queries about the Taj Hotel in the language they use:
77
+ English, Telugu, or Hindi. Always respond clearly and concisely,
78
+ ideally within 10-15 words. If you don't know the answer, say so politely.
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ Context:
81
+ {context_str}
82
 
83
+ User's Question:
84
+ {query_str}
85
 
86
+ Language-Specific Guidance:
87
+ - For English: Respond in English.
88
+ - For Telugu: తెలుగు లో సమాధానం ఇవ్వండి.
89
+ - For Hindi: हिंदी में उत्तर दें.
90
+ """
91
+ )
92
  ]
 
93
 
94
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
95