voicechatGTTS / main.py
Gopikanth123's picture
Update main.py
8cf1ab9 verified
import os
import shutil
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel
from deep_translator import GoogleTranslator
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=HF_TOKEN,
)
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name=repo_id,
tokenizer_name=repo_id,
context_window=3000,
token=HF_TOKEN,
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# Replace the embedding model with XLM-R
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
# )
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Configure tokenizer and model if required
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
model = AutoModel.from_pretrained("xlm-roberta-base")
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
# Clear previous data by removing the persist directory
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# Recreate the persist directory after removal
os.makedirs(PERSIST_DIR, exist_ok=True)
# Load new documents from the directory
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# Create a new index with the new documents
index = VectorStoreIndex.from_documents(new_documents)
# Persist the new index
index.storage_context.persist(persist_dir=PERSIST_DIR)
# def handle_query(query):
# context_str = ""
# # Build context from current chat history
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Taj Hotel voice chatbot and your name is Taj hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the Taj hotel data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# # context_str = ""
# # # Build context from current chat history
# # for past_query, response in reversed(current_chat_history):
# # if past_query.strip():
# # context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# print(f"Querying: {query}")
# answer = query_engine.query(query)
# # Extracting the response
# if hasattr(answer, 'response'):
# response = answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response = answer['response']
# else:
# response = "I'm sorry, I couldn't find an answer to that."
# # Append to chat history
# current_chat_history.append((query, response))
# return response
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(query)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query, language):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query)
# Map of supported languages
supported_languages = {
"hindi": "hi",
"bengali": "bn",
"telugu": "te",
"marathi": "mr",
"tamil": "ta",
"gujarati": "gu",
"kannada": "kn",
"malayalam": "ml",
"punjabi": "pa",
"odia": "or",
"urdu": "ur",
"assamese": "as",
"sanskrit": "sa",
"arabic": "ar",
"australian": "en-AU",
"bangla-india": "bn-IN",
"chinese": "zh-CN",
"dutch": "nl",
"french": "fr",
"filipino": "tl",
"greek": "el",
"indonesian": "id",
"italian": "it",
"japanese": "ja",
"korean": "ko",
"latin": "la",
"nepali": "ne",
"portuguese": "pt",
"romanian": "ro",
"russian": "ru",
"spanish": "es",
"swedish": "sv",
"thai": "th",
"ukrainian": "uk",
"turkish": "tr"
}
# Initialize the translated text
translated_text = bot_response
# Translate only if the language is supported and not English
try:
if language in supported_languages:
target_lang = supported_languages[language]
translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
print(translated_text)
else:
print(f"Unsupported language: {language}")
except Exception as e:
# Handle translation errors
print(f"Translation error: {e}")
translated_text = "Sorry, I couldn't translate the response."
# Append to chat history
chat_history.append((query, translated_text))
return translated_text
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
language = request.json.get("language")
if not user_message:
return jsonify({"response": "Please say something!"})
bot_response = generate_response(user_message,language)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True)