Spaces:
Sleeping
Sleeping
Gopikanth123
commited on
Update main.py
Browse files
main.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
-
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
-
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
|
|
10 |
# Ensure HF_TOKEN is set
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
if not HF_TOKEN:
|
@@ -27,13 +28,15 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
27 |
max_new_tokens=512,
|
28 |
generate_kwargs={"temperature": 0.1},
|
29 |
)
|
30 |
-
|
31 |
-
#
|
|
|
|
|
32 |
Settings.embed_model = HuggingFaceEmbedding(
|
33 |
-
model_name="xlm-roberta-base" #
|
34 |
)
|
35 |
|
36 |
-
# Configure tokenizer and model
|
37 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
38 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
39 |
|
@@ -46,80 +49,56 @@ os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
46 |
chat_history = []
|
47 |
current_chat_history = []
|
48 |
|
49 |
-
# Data ingestion function
|
50 |
def data_ingestion_from_directory():
|
|
|
51 |
if os.path.exists(PERSIST_DIR):
|
52 |
-
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and its contents
|
53 |
|
|
|
54 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
|
|
|
|
55 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
|
|
|
|
56 |
index = VectorStoreIndex.from_documents(new_documents)
|
|
|
|
|
57 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
58 |
|
59 |
-
def handle_query(query
|
60 |
context_str = ""
|
61 |
-
|
62 |
# Build context from current chat history
|
63 |
for past_query, response in reversed(current_chat_history):
|
64 |
if past_query.strip():
|
65 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
66 |
|
67 |
-
# Define the chat response template based on selected language
|
68 |
-
if user_language == 'te': # Telugu
|
69 |
-
response_template = """
|
70 |
-
మీరు తాజ్ హోటల్ చాట్బాట్, తాజ్ హోటల్ సహాయకుడిగా పనిచేస్తున్నారు.
|
71 |
-
**మీరు చేసే పాత్ర:**
|
72 |
-
- వినియోగదారుడి ప్రాముఖ్యమైన భాష (ఆంగ్లం, తెలుగు, హిందీ) లో సమాధానాలు ఇవ్వండి.
|
73 |
-
- హోటల్ యొక్క సేవలు, సదుపాయాలు మరియు విధానాలపై సమాచారం ఇవ్వండి.
|
74 |
-
**సూచన:**
|
75 |
-
- **ప్రసంగం:**
|
76 |
-
{context_str}
|
77 |
-
- **వినియోగదారు ప్రశ్న:**
|
78 |
-
{query_str}
|
79 |
-
**సమాధానం:** [మీ సమాధానం తెలుగులో ఇక్కడ]
|
80 |
-
"""
|
81 |
-
elif user_language == 'hi': # Hindi
|
82 |
-
response_template = """
|
83 |
-
आप ताज होटल के चैटबोट, ताज होटल हेल्पर हैं।
|
84 |
-
**आपकी भूमिका:**
|
85 |
-
- उपयोगकर्ता द्वारा चुनी गई भाषा (अंग्रेजी, हिंदी, या तेलुगु) में उत्तर दें।
|
86 |
-
- होटल की सेवाओं, सुविधाओं और नीतियों के बारे में जानकारी प्रदान करें।
|
87 |
-
**निर्देश:**
|
88 |
-
- **संदर्भ:**
|
89 |
-
{context_str}
|
90 |
-
- **उपयोगकर्ता का प्रश्न:**
|
91 |
-
{query_str}
|
92 |
-
**उत्तर:** [आपका उत्तर हिंदी में यहाँ]
|
93 |
-
"""
|
94 |
-
else: # Default to English
|
95 |
-
response_template = """
|
96 |
-
You are the Taj Hotel chatbot, Taj Hotel Helper.
|
97 |
-
**Your Role:**
|
98 |
-
- Respond accurately and concisely in the user's preferred language (English, Telugu, or Hindi).
|
99 |
-
- Provide information about the hotel’s services, amenities, and policies.
|
100 |
-
**Instructions:**
|
101 |
-
- **Context:**
|
102 |
-
{context_str}
|
103 |
-
- **User's Question:**
|
104 |
-
{query_str}
|
105 |
-
**Response:** [Your concise response here]
|
106 |
-
"""
|
107 |
-
|
108 |
-
# Create a list of chat messages with the user query and response template
|
109 |
chat_text_qa_msgs = [
|
110 |
(
|
111 |
"user",
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
113 |
)
|
114 |
]
|
115 |
|
116 |
-
# Use the defined chat template
|
117 |
-
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
118 |
|
|
|
|
|
|
|
119 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
120 |
index = load_index_from_storage(storage_context)
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
# Query the index and retrieve the answer
|
123 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
124 |
print(f"Querying: {query}")
|
125 |
answer = query_engine.query(query)
|
@@ -136,17 +115,16 @@ def handle_query(query, user_language):
|
|
136 |
current_chat_history.append((query, response))
|
137 |
return response
|
138 |
|
139 |
-
|
140 |
app = Flask(__name__)
|
141 |
|
142 |
# Data ingestion
|
143 |
data_ingestion_from_directory()
|
144 |
|
145 |
# Generate Response
|
146 |
-
def generate_response(query
|
147 |
try:
|
148 |
# Call the handle_query function to get the response
|
149 |
-
bot_response = handle_query(query
|
150 |
return bot_response
|
151 |
except Exception as e:
|
152 |
return f"Error fetching the response: {str(e)}"
|
@@ -161,17 +139,13 @@ def index():
|
|
161 |
def chat():
|
162 |
try:
|
163 |
user_message = request.json.get("message")
|
164 |
-
selected_language = request.json.get("language") # Get selected language from the request
|
165 |
if not user_message:
|
166 |
return jsonify({"response": "Please say something!"})
|
167 |
|
168 |
-
|
169 |
-
return jsonify({"response": "Invalid language selected."})
|
170 |
-
|
171 |
-
bot_response = generate_response(user_message, selected_language)
|
172 |
return jsonify({"response": bot_response})
|
173 |
except Exception as e:
|
174 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
175 |
|
176 |
if __name__ == '__main__':
|
177 |
-
app.run(debug=True)
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from flask import Flask, render_template, request, jsonify
|
4 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
5 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
|
10 |
+
|
11 |
# Ensure HF_TOKEN is set
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
|
|
28 |
max_new_tokens=512,
|
29 |
generate_kwargs={"temperature": 0.1},
|
30 |
)
|
31 |
+
# Settings.embed_model = HuggingFaceEmbedding(
|
32 |
+
# model_name="BAAI/bge-small-en-v1.5"
|
33 |
+
# )
|
34 |
+
# Replace the embedding model with XLM-R
|
35 |
Settings.embed_model = HuggingFaceEmbedding(
|
36 |
+
model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
37 |
)
|
38 |
|
39 |
+
# Configure tokenizer and model if required
|
40 |
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
41 |
model = AutoModel.from_pretrained("xlm-roberta-base")
|
42 |
|
|
|
49 |
chat_history = []
|
50 |
current_chat_history = []
|
51 |
|
|
|
52 |
def data_ingestion_from_directory():
|
53 |
+
# Clear previous data by removing the persist directory
|
54 |
if os.path.exists(PERSIST_DIR):
|
55 |
+
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
|
56 |
|
57 |
+
# Recreate the persist directory after removal
|
58 |
os.makedirs(PERSIST_DIR, exist_ok=True)
|
59 |
+
|
60 |
+
# Load new documents from the directory
|
61 |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
62 |
+
|
63 |
+
# Create a new index with the new documents
|
64 |
index = VectorStoreIndex.from_documents(new_documents)
|
65 |
+
|
66 |
+
# Persist the new index
|
67 |
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
68 |
|
69 |
+
def handle_query(query):
|
70 |
context_str = ""
|
71 |
+
|
72 |
# Build context from current chat history
|
73 |
for past_query, response in reversed(current_chat_history):
|
74 |
if past_query.strip():
|
75 |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
chat_text_qa_msgs = [
|
78 |
(
|
79 |
"user",
|
80 |
+
"""
|
81 |
+
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
|
82 |
+
{context_str}
|
83 |
+
Question:
|
84 |
+
{query_str}
|
85 |
+
"""
|
86 |
)
|
87 |
]
|
88 |
|
|
|
|
|
89 |
|
90 |
+
|
91 |
+
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
92 |
+
|
93 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
94 |
index = load_index_from_storage(storage_context)
|
95 |
+
# context_str = ""
|
96 |
+
|
97 |
+
# # Build context from current chat history
|
98 |
+
# for past_query, response in reversed(current_chat_history):
|
99 |
+
# if past_query.strip():
|
100 |
+
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
101 |
|
|
|
102 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
103 |
print(f"Querying: {query}")
|
104 |
answer = query_engine.query(query)
|
|
|
115 |
current_chat_history.append((query, response))
|
116 |
return response
|
117 |
|
|
|
118 |
app = Flask(__name__)
|
119 |
|
120 |
# Data ingestion
|
121 |
data_ingestion_from_directory()
|
122 |
|
123 |
# Generate Response
|
124 |
+
def generate_response(query):
|
125 |
try:
|
126 |
# Call the handle_query function to get the response
|
127 |
+
bot_response = handle_query(query)
|
128 |
return bot_response
|
129 |
except Exception as e:
|
130 |
return f"Error fetching the response: {str(e)}"
|
|
|
139 |
def chat():
|
140 |
try:
|
141 |
user_message = request.json.get("message")
|
|
|
142 |
if not user_message:
|
143 |
return jsonify({"response": "Please say something!"})
|
144 |
|
145 |
+
bot_response = generate_response(user_message)
|
|
|
|
|
|
|
146 |
return jsonify({"response": bot_response})
|
147 |
except Exception as e:
|
148 |
return jsonify({"response": f"An error occurred: {str(e)}"})
|
149 |
|
150 |
if __name__ == '__main__':
|
151 |
+
app.run(debug=True)
|