Spaces:
Runtime error
Runtime error
File size: 6,427 Bytes
34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 7e7428c 34cc5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import shutil
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel, XLMRobertaXLForMultipleChoice
from deep_translator import GoogleTranslator
import torch
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
repo_id = "facebook/xlm-roberta-xl"
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = XLMRobertaXLForMultipleChoice.from_pretrained(repo_id)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
# Clear previous data by removing the persist directory
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# Recreate the persist directory after removal
os.makedirs(PERSIST_DIR, exist_ok=True)
# Load new documents from the directory
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# Create a new index with the new documents
index = VectorStoreIndex.from_documents(new_documents)
# Persist the new index
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(query)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
def evaluate_model(prompt, choice0, choice1):
labels = torch.tensor(0).unsqueeze(0) # choice0 is correct, batch size 1
encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
# the linear classifier still needs to be trained
loss = outputs.loss
logits = outputs.logits
return loss, logits
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query, language):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query)
# Map of supported languages
supported_languages = {
"hindi": "hi",
"bengali": "bn",
"telugu": "te",
"marathi": "mr",
"tamil": "ta",
"gujarati": "gu",
"kannada": "kn",
"malayalam": "ml",
"punjabi": "pa",
"odia": "or",
"urdu": "ur",
"assamese": "as",
"sanskrit": "sa",
"arabic": "ar",
"australian": "en-AU",
"bangla-india": "bn-IN",
"chinese": "zh-CN",
"dutch": "nl",
"french": "fr",
"filipino": "tl",
"greek": "el",
"indonesian": "id",
"italian": "it",
"japanese": "ja",
"korean": "ko",
"latin": "la",
"nepali": "ne",
"portuguese": "pt",
"romanian": "ro",
"russian": "ru",
"spanish": "es",
"swedish": "sv",
"thai": "th",
"ukrainian": "uk",
"turkish": "tr"
}
# Initialize the translated text
translated_text = bot_response
# Translate only if the language is supported and not English
try:
if language in supported_languages:
target_lang = supported_languages[language]
translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
print(translated_text)
else:
print(f"Unsupported language: {language}")
except Exception as e:
# Handle translation errors
print(f"Translation error: {e}")
translated_text = "Sorry, I couldn't translate the response."
# Append to chat history
chat_history.append((query, translated_text))
return translated_text
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
language = request.json.get("language")
if not user_message:
return jsonify({"response": "Please say something!"})
bot_response = generate_response(user_message, language)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True)
|