Spaces:
Runtime error
Runtime error
File size: 4,956 Bytes
f5c5e39 620dd85 f5c5e39 620dd85 f5c5e39 0e3c01c f5c5e39 620dd85 938fd74 f5c5e39 620dd85 f5c5e39 16d15ab f5c5e39 16d15ab f5c5e39 81ab56f f5c5e39 3c88d1c f5c5e39 d3b93f0 938fd74 d3b93f0 c32fec2 f5c5e39 3c88d1c f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import shutil
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=HF_TOKEN,
)
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name=repo_id,
tokenizer_name=repo_id,
context_window=3000,
token=HF_TOKEN,
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# Replace the embedding model with XLM-R
Settings.embed_model = HuggingFaceEmbedding(
model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
)
# Configure tokenizer and model if required
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
model = AutoModel.from_pretrained("xlm-roberta-base")
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
# Clear previous data by removing the persist directory
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# Recreate the persist directory after removal
os.makedirs(PERSIST_DIR, exist_ok=True)
# Load new documents from the directory
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# Create a new index with the new documents
index = VectorStoreIndex.from_documents(new_documents)
# Persist the new index
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""You are the Taj Hotel chatbot, Taj Hotel Helper.
Respond professionally and concisely in the user's preferred language.
Prioritize accuracy and refer only to your context. If unsure, admit it gracefully.
Context: {context_str}
User's Question: {query_str}
Reply Rules:
- Be concise: 10-15 words per answer.
- Match the language: English, Telugu, or Hindi.
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
# Build context from current chat history
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(f"Querying: {query}")
answer = query_engine.query(query)
# Extracting the response
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "I'm sorry, I couldn't find an answer to that."
# Append to chat history
current_chat_history.append((query, response))
return response
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query)
return bot_response
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
if not user_message:
return jsonify({"response": "Please say something!"})
bot_response = generate_response(user_message)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True) |