File size: 5,115 Bytes
f031659
 
 
 
a066142
f031659
a066142
 
f031659
 
a066142
 
 
 
 
 
 
 
 
 
 
 
 
f031659
 
d25bfc0
f031659
9b1e028
f031659
 
 
9b1e028
f031659
9b1e028
 
f031659
 
5a9bbeb
 
 
 
 
9b1e028
5a9bbeb
 
9b1e028
 
5a9bbeb
 
 
9b1e028
5a9bbeb
 
9b1e028
 
5a9bbeb
9b1e028
 
5a9bbeb
 
9b1e028
5a9bbeb
 
9b1e028
 
5a9bbeb
9b1e028
5a9bbeb
 
9b1e028
 
5a9bbeb
9b1e028
 
5a9bbeb
 
 
 
9b1e028
 
 
 
 
5a9bbeb
9b1e028
 
5a9bbeb
 
9b1e028
5a9bbeb
 
9b1e028
 
5a9bbeb
9b1e028
5a9bbeb
9b1e028
5a9bbeb
9b1e028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python

from __future__ import annotations

import os
import pathlib
import shlex
import subprocess
import tarfile

if os.getenv("SYSTEM") == "spaces":
    subprocess.run(shlex.split("pip install click==7.1.2"))
    subprocess.run(shlex.split("pip install typer==0.9.4"))

    import mim

    mim.uninstall("mmcv-full", confirm_yes=True)
    mim.install("mmcv-full==1.5.0", is_yes=True)

    subprocess.run(shlex.split("pip uninstall -y opencv-python"))
    subprocess.run(shlex.split("pip uninstall -y opencv-python-headless"))
    subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74"))

import gradio as gr

from model import AppDetModel, AppPoseModel

DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)"


def extract_tar() -> None:
    if pathlib.Path("mmdet_configs/configs").exists():
        return
    with tarfile.open("mmdet_configs/configs.tar") as f:
        f.extractall("mmdet_configs")


extract_tar()

det_model = AppDetModel()
pose_model = AppPoseModel()

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Group():
        gr.Markdown("## Step 1")
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(label="Input Image", type="numpy")
                with gr.Row():
                    detector_name = gr.Dropdown(
                        label="Detector", choices=list(det_model.MODEL_DICT.keys()), value=det_model.model_name
                    )
                with gr.Row():
                    detect_button = gr.Button("Detect")
                    det_preds = gr.State()
            with gr.Column():
                with gr.Row():
                    detection_visualization = gr.Image(label="Detection Result", type="numpy", elem_id="det-result")
                with gr.Row():
                    vis_det_score_threshold = gr.Slider(
                        label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5
                    )
                with gr.Row():
                    redraw_det_button = gr.Button(value="Redraw")

        with gr.Row():
            paths = sorted(pathlib.Path("images").rglob("*.jpg"))
            example_images = gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)

    with gr.Group():
        gr.Markdown("## Step 2")
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    pose_model_name = gr.Dropdown(
                        label="Pose Model", choices=list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name
                    )
                det_score_threshold = gr.Slider(
                    label="Box Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5
                )
                with gr.Row():
                    predict_button = gr.Button("Predict")
                    pose_preds = gr.State()
            with gr.Column():
                with gr.Row():
                    pose_visualization = gr.Image(label="Result", type="numpy", elem_id="pose-result")
                with gr.Row():
                    vis_kpt_score_threshold = gr.Slider(
                        label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3
                    )
                with gr.Row():
                    vis_dot_radius = gr.Slider(label="Dot Radius", minimum=1, maximum=10, step=1, value=4)
                with gr.Row():
                    vis_line_thickness = gr.Slider(label="Line Thickness", minimum=1, maximum=10, step=1, value=2)
                with gr.Row():
                    redraw_pose_button = gr.Button("Redraw")

    detector_name.change(fn=det_model.set_model, inputs=detector_name)
    detect_button.click(
        fn=det_model.run,
        inputs=[
            detector_name,
            input_image,
            vis_det_score_threshold,
        ],
        outputs=[
            det_preds,
            detection_visualization,
        ],
    )
    redraw_det_button.click(
        fn=det_model.visualize_detection_results,
        inputs=[
            input_image,
            det_preds,
            vis_det_score_threshold,
        ],
        outputs=detection_visualization,
    )

    pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name)
    predict_button.click(
        fn=pose_model.run,
        inputs=[
            pose_model_name,
            input_image,
            det_preds,
            det_score_threshold,
            vis_kpt_score_threshold,
            vis_dot_radius,
            vis_line_thickness,
        ],
        outputs=[
            pose_preds,
            pose_visualization,
        ],
    )
    redraw_pose_button.click(
        fn=pose_model.visualize_pose_results,
        inputs=[
            input_image,
            pose_preds,
            vis_kpt_score_threshold,
            vis_dot_radius,
            vis_line_thickness,
        ],
        outputs=pose_visualization,
    )

if __name__ == "__main__":
    demo.queue(max_size=10).launch()