Spaces:
Running
Running
File size: 5,115 Bytes
f031659 a066142 f031659 a066142 f031659 a066142 f031659 d25bfc0 f031659 9b1e028 f031659 9b1e028 f031659 9b1e028 f031659 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 5a9bbeb 9b1e028 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import shlex
import subprocess
import tarfile
if os.getenv("SYSTEM") == "spaces":
subprocess.run(shlex.split("pip install click==7.1.2"))
subprocess.run(shlex.split("pip install typer==0.9.4"))
import mim
mim.uninstall("mmcv-full", confirm_yes=True)
mim.install("mmcv-full==1.5.0", is_yes=True)
subprocess.run(shlex.split("pip uninstall -y opencv-python"))
subprocess.run(shlex.split("pip uninstall -y opencv-python-headless"))
subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74"))
import gradio as gr
from model import AppDetModel, AppPoseModel
DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)"
def extract_tar() -> None:
if pathlib.Path("mmdet_configs/configs").exists():
return
with tarfile.open("mmdet_configs/configs.tar") as f:
f.extractall("mmdet_configs")
extract_tar()
det_model = AppDetModel()
pose_model = AppPoseModel()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
gr.Markdown("## Step 1")
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
detector_name = gr.Dropdown(
label="Detector", choices=list(det_model.MODEL_DICT.keys()), value=det_model.model_name
)
with gr.Row():
detect_button = gr.Button("Detect")
det_preds = gr.State()
with gr.Column():
with gr.Row():
detection_visualization = gr.Image(label="Detection Result", type="numpy", elem_id="det-result")
with gr.Row():
vis_det_score_threshold = gr.Slider(
label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5
)
with gr.Row():
redraw_det_button = gr.Button(value="Redraw")
with gr.Row():
paths = sorted(pathlib.Path("images").rglob("*.jpg"))
example_images = gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
with gr.Group():
gr.Markdown("## Step 2")
with gr.Row():
with gr.Column():
with gr.Row():
pose_model_name = gr.Dropdown(
label="Pose Model", choices=list(pose_model.MODEL_DICT.keys()), value=pose_model.model_name
)
det_score_threshold = gr.Slider(
label="Box Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5
)
with gr.Row():
predict_button = gr.Button("Predict")
pose_preds = gr.State()
with gr.Column():
with gr.Row():
pose_visualization = gr.Image(label="Result", type="numpy", elem_id="pose-result")
with gr.Row():
vis_kpt_score_threshold = gr.Slider(
label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3
)
with gr.Row():
vis_dot_radius = gr.Slider(label="Dot Radius", minimum=1, maximum=10, step=1, value=4)
with gr.Row():
vis_line_thickness = gr.Slider(label="Line Thickness", minimum=1, maximum=10, step=1, value=2)
with gr.Row():
redraw_pose_button = gr.Button("Redraw")
detector_name.change(fn=det_model.set_model, inputs=detector_name)
detect_button.click(
fn=det_model.run,
inputs=[
detector_name,
input_image,
vis_det_score_threshold,
],
outputs=[
det_preds,
detection_visualization,
],
)
redraw_det_button.click(
fn=det_model.visualize_detection_results,
inputs=[
input_image,
det_preds,
vis_det_score_threshold,
],
outputs=detection_visualization,
)
pose_model_name.change(fn=pose_model.set_model, inputs=pose_model_name)
predict_button.click(
fn=pose_model.run,
inputs=[
pose_model_name,
input_image,
det_preds,
det_score_threshold,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=[
pose_preds,
pose_visualization,
],
)
redraw_pose_button.click(
fn=pose_model.visualize_pose_results,
inputs=[
input_image,
pose_preds,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=pose_visualization,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|