ViTPose / app.py
hysts's picture
hysts HF staff
Update
e1695f2
raw
history blame
6.29 kB
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import tarfile
import gradio as gr
from model import AppDetModel, AppPoseModel
DESCRIPTION = '# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)'
def extract_tar() -> None:
if pathlib.Path('mmdet_configs/configs').exists():
return
with tarfile.open('mmdet_configs/configs.tar') as f:
f.extractall('mmdet_configs')
extract_tar()
det_model = AppDetModel()
pose_model = AppPoseModel()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown('## Step 1')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='numpy')
with gr.Row():
detector_name = gr.Dropdown(
label='Detector',
choices=list(det_model.MODEL_DICT.keys()),
value=det_model.model_name)
with gr.Row():
detect_button = gr.Button('Detect')
det_preds = gr.Variable()
with gr.Column():
with gr.Row():
detection_visualization = gr.Image(
label='Detection Result',
type='numpy',
elem_id='det-result')
with gr.Row():
vis_det_score_threshold = gr.Slider(
label='Visualization Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5)
with gr.Row():
redraw_det_button = gr.Button(value='Redraw')
with gr.Row():
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
example_images = gr.Examples(examples=[[path.as_posix()]
for path in paths],
inputs=input_image)
with gr.Box():
gr.Markdown('## Step 2')
with gr.Row():
with gr.Column():
with gr.Row():
pose_model_name = gr.Dropdown(
label='Pose Model',
choices=list(pose_model.MODEL_DICT.keys()),
value=pose_model.model_name)
det_score_threshold = gr.Slider(label='Box Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.5)
with gr.Row():
predict_button = gr.Button('Predict')
pose_preds = gr.Variable()
with gr.Column():
with gr.Row():
pose_visualization = gr.Image(label='Result',
type='numpy',
elem_id='pose-result')
with gr.Row():
vis_kpt_score_threshold = gr.Slider(
label='Visualization Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.3)
with gr.Row():
vis_dot_radius = gr.Slider(label='Dot Radius',
minimum=1,
maximum=10,
step=1,
value=4)
with gr.Row():
vis_line_thickness = gr.Slider(label='Line Thickness',
minimum=1,
maximum=10,
step=1,
value=2)
with gr.Row():
redraw_pose_button = gr.Button('Redraw')
detector_name.change(fn=det_model.set_model,
inputs=detector_name,
outputs=None)
detect_button.click(fn=det_model.run,
inputs=[
detector_name,
input_image,
vis_det_score_threshold,
],
outputs=[
det_preds,
detection_visualization,
])
redraw_det_button.click(fn=det_model.visualize_detection_results,
inputs=[
input_image,
det_preds,
vis_det_score_threshold,
],
outputs=detection_visualization)
pose_model_name.change(fn=pose_model.set_model,
inputs=pose_model_name,
outputs=None)
predict_button.click(fn=pose_model.run,
inputs=[
pose_model_name,
input_image,
det_preds,
det_score_threshold,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=[
pose_preds,
pose_visualization,
])
redraw_pose_button.click(fn=pose_model.visualize_pose_results,
inputs=[
input_image,
pose_preds,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=pose_visualization)
demo.queue(max_size=10).launch()