ViTPose / model.py
hysts's picture
hysts HF staff
Update
a066142
raw
history blame
7.24 kB
from __future__ import annotations
import pathlib
import sys
import huggingface_hub
import numpy as np
import torch
import torch.nn as nn
app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / "ViTPose"
sys.path.insert(0, submodule_dir.as_posix())
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (
inference_top_down_pose_model,
init_pose_model,
process_mmdet_results,
vis_pose_result,
)
class DetModel:
MODEL_DICT = {
"YOLOX-tiny": {
"config": "mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth",
},
"YOLOX-s": {
"config": "mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth",
},
"YOLOX-l": {
"config": "mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth",
},
"YOLOX-x": {
"config": "mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py",
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth",
},
}
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._load_all_models_once()
self.model_name = "YOLOX-l"
self.model = self._load_model(self.model_name)
def _load_all_models_once(self) -> None:
for name in self.MODEL_DICT:
self._load_model(name)
def _load_model(self, name: str) -> nn.Module:
d = self.MODEL_DICT[name]
return init_detector(d["config"], d["model"], device=self.device)
def set_model(self, name: str) -> None:
if name == self.model_name:
return
self.model_name = name
self.model = self._load_model(name)
def detect_and_visualize(self, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
out = self.detect(image)
vis = self.visualize_detection_results(image, out, score_threshold)
return out, vis
def detect(self, image: np.ndarray) -> list[np.ndarray]:
image = image[:, :, ::-1] # RGB -> BGR
out = inference_detector(self.model, image)
return out
def visualize_detection_results(
self, image: np.ndarray, detection_results: list[np.ndarray], score_threshold: float = 0.3
) -> np.ndarray:
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
image = image[:, :, ::-1] # RGB -> BGR
vis = self.model.show_result(
image, person_det, score_thr=score_threshold, bbox_color=None, text_color=(200, 200, 200), mask_color=None
)
return vis[:, :, ::-1] # BGR -> RGB
class AppDetModel(DetModel):
def run(self, model_name: str, image: np.ndarray, score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
self.set_model(model_name)
return self.detect_and_visualize(image, score_threshold)
class PoseModel:
MODEL_DICT = {
"ViTPose-B (single-task train)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py",
"model": "models/vitpose-b.pth",
},
"ViTPose-L (single-task train)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py",
"model": "models/vitpose-l.pth",
},
"ViTPose-B (multi-task train, COCO)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py",
"model": "models/vitpose-b-multi-coco.pth",
},
"ViTPose-L (multi-task train, COCO)": {
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py",
"model": "models/vitpose-l-multi-coco.pth",
},
}
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model_name = "ViTPose-B (multi-task train, COCO)"
self.model = self._load_model(self.model_name)
def _load_all_models_once(self) -> None:
for name in self.MODEL_DICT:
self._load_model(name)
def _load_model(self, name: str) -> nn.Module:
d = self.MODEL_DICT[name]
ckpt_path = huggingface_hub.hf_hub_download("public-data/ViTPose", d["model"])
model = init_pose_model(d["config"], ckpt_path, device=self.device)
return model
def set_model(self, name: str) -> None:
if name == self.model_name:
return
self.model_name = name
self.model = self._load_model(name)
def predict_pose_and_visualize(
self,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float,
kpt_score_threshold: float,
vis_dot_radius: int,
vis_line_thickness: int,
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
out = self.predict_pose(image, det_results, box_score_threshold)
vis = self.visualize_pose_results(image, out, kpt_score_threshold, vis_dot_radius, vis_line_thickness)
return out, vis
def predict_pose(
self, image: np.ndarray, det_results: list[np.ndarray], box_score_threshold: float = 0.5
) -> list[dict[str, np.ndarray]]:
image = image[:, :, ::-1] # RGB -> BGR
person_results = process_mmdet_results(det_results, 1)
out, _ = inference_top_down_pose_model(
self.model, image, person_results=person_results, bbox_thr=box_score_threshold, format="xyxy"
)
return out
def visualize_pose_results(
self,
image: np.ndarray,
pose_results: list[np.ndarray],
kpt_score_threshold: float = 0.3,
vis_dot_radius: int = 4,
vis_line_thickness: int = 1,
) -> np.ndarray:
image = image[:, :, ::-1] # RGB -> BGR
vis = vis_pose_result(
self.model,
image,
pose_results,
kpt_score_thr=kpt_score_threshold,
radius=vis_dot_radius,
thickness=vis_line_thickness,
)
return vis[:, :, ::-1] # BGR -> RGB
class AppPoseModel(PoseModel):
def run(
self,
model_name: str,
image: np.ndarray,
det_results: list[np.ndarray],
box_score_threshold: float,
kpt_score_threshold: float,
vis_dot_radius: int,
vis_line_thickness: int,
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
self.set_model(model_name)
return self.predict_pose_and_visualize(
image, det_results, box_score_threshold, kpt_score_threshold, vis_dot_radius, vis_line_thickness
)