Spaces:
Running
Running
hysts
commited on
Commit
•
37c98fe
1
Parent(s):
713078e
Refactor
Browse files
app.py
CHANGED
@@ -3,35 +3,17 @@
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import argparse
|
6 |
-
import os
|
7 |
import pathlib
|
8 |
-
import subprocess
|
9 |
-
import sys
|
10 |
import tarfile
|
11 |
|
12 |
-
if os.getenv('SYSTEM') == 'spaces':
|
13 |
-
import mim
|
14 |
-
|
15 |
-
mim.uninstall('mmcv-full', confirm_yes=True)
|
16 |
-
mim.install('mmcv-full==1.5.0', is_yes=True)
|
17 |
-
|
18 |
-
subprocess.call('pip uninstall -y opencv-python'.split())
|
19 |
-
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
20 |
-
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
21 |
-
|
22 |
import gradio as gr
|
23 |
-
import huggingface_hub
|
24 |
-
import numpy as np
|
25 |
-
import torch
|
26 |
-
import torch.nn as nn
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
32 |
-
process_mmdet_results, vis_pose_result)
|
33 |
|
34 |
-
|
|
|
35 |
|
36 |
|
37 |
def parse_args() -> argparse.Namespace:
|
@@ -46,168 +28,6 @@ def parse_args() -> argparse.Namespace:
|
|
46 |
return parser.parse_args()
|
47 |
|
48 |
|
49 |
-
class DetModel:
|
50 |
-
def __init__(self, device: str | torch.device):
|
51 |
-
self.device = torch.device(device)
|
52 |
-
self.models = self._load_models()
|
53 |
-
self.model_name = 'YOLOX-l'
|
54 |
-
|
55 |
-
def _load_models(self) -> dict[str, nn.Module]:
|
56 |
-
model_dict = {
|
57 |
-
'YOLOX-tiny': {
|
58 |
-
'config':
|
59 |
-
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
60 |
-
'model':
|
61 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
62 |
-
},
|
63 |
-
'YOLOX-s': {
|
64 |
-
'config':
|
65 |
-
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
66 |
-
'model':
|
67 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
68 |
-
},
|
69 |
-
'YOLOX-l': {
|
70 |
-
'config':
|
71 |
-
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
72 |
-
'model':
|
73 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
74 |
-
},
|
75 |
-
'YOLOX-x': {
|
76 |
-
'config':
|
77 |
-
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
78 |
-
'model':
|
79 |
-
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
80 |
-
},
|
81 |
-
}
|
82 |
-
models = {
|
83 |
-
key: init_detector(dic['config'], dic['model'], device=self.device)
|
84 |
-
for key, dic in model_dict.items()
|
85 |
-
}
|
86 |
-
return models
|
87 |
-
|
88 |
-
def set_model_name(self, name: str) -> None:
|
89 |
-
self.model_name = name
|
90 |
-
|
91 |
-
def detect_and_visualize(
|
92 |
-
self, image: np.ndarray,
|
93 |
-
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
94 |
-
out = self.detect(image)
|
95 |
-
vis = self.visualize_detection_results(image, out, score_threshold)
|
96 |
-
return out, vis
|
97 |
-
|
98 |
-
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
99 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
100 |
-
model = self.models[self.model_name]
|
101 |
-
out = inference_detector(model, image)
|
102 |
-
return out
|
103 |
-
|
104 |
-
def visualize_detection_results(
|
105 |
-
self,
|
106 |
-
image: np.ndarray,
|
107 |
-
detection_results: list[np.ndarray],
|
108 |
-
score_threshold: float = 0.3) -> np.ndarray:
|
109 |
-
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
|
110 |
-
|
111 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
112 |
-
model = self.models[self.model_name]
|
113 |
-
vis = model.show_result(image,
|
114 |
-
person_det,
|
115 |
-
score_thr=score_threshold,
|
116 |
-
bbox_color=None,
|
117 |
-
text_color=(200, 200, 200),
|
118 |
-
mask_color=None)
|
119 |
-
return vis[:, :, ::-1] # BGR -> RGB
|
120 |
-
|
121 |
-
|
122 |
-
class PoseModel:
|
123 |
-
def __init__(self, device: str | torch.device):
|
124 |
-
self.device = torch.device(device)
|
125 |
-
self.models = self._load_models()
|
126 |
-
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
127 |
-
|
128 |
-
def _load_models(self) -> dict[str, nn.Module]:
|
129 |
-
model_dict = {
|
130 |
-
'ViTPose-B (single-task train)': {
|
131 |
-
'config':
|
132 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
133 |
-
'model': 'models/vitpose-b.pth',
|
134 |
-
},
|
135 |
-
'ViTPose-L (single-task train)': {
|
136 |
-
'config':
|
137 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
138 |
-
'model': 'models/vitpose-l.pth',
|
139 |
-
},
|
140 |
-
'ViTPose-B (multi-task train, COCO)': {
|
141 |
-
'config':
|
142 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
143 |
-
'model': 'models/vitpose-b-multi-coco.pth',
|
144 |
-
},
|
145 |
-
'ViTPose-L (multi-task train, COCO)': {
|
146 |
-
'config':
|
147 |
-
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
148 |
-
'model': 'models/vitpose-l-multi-coco.pth',
|
149 |
-
},
|
150 |
-
}
|
151 |
-
models = dict()
|
152 |
-
for key, dic in model_dict.items():
|
153 |
-
ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose',
|
154 |
-
dic['model'],
|
155 |
-
use_auth_token=TOKEN)
|
156 |
-
model = init_pose_model(dic['config'],
|
157 |
-
ckpt_path,
|
158 |
-
device=self.device)
|
159 |
-
models[key] = model
|
160 |
-
return models
|
161 |
-
|
162 |
-
def set_model_name(self, name: str) -> None:
|
163 |
-
self.model_name = name
|
164 |
-
|
165 |
-
def predict_pose_and_visualize(
|
166 |
-
self,
|
167 |
-
image: np.ndarray,
|
168 |
-
det_results: list[np.ndarray],
|
169 |
-
box_score_threshold: float,
|
170 |
-
kpt_score_threshold: float,
|
171 |
-
vis_dot_radius: int,
|
172 |
-
vis_line_thickness: int,
|
173 |
-
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
174 |
-
out = self.predict_pose(image, det_results, box_score_threshold)
|
175 |
-
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
176 |
-
vis_dot_radius, vis_line_thickness)
|
177 |
-
return out, vis
|
178 |
-
|
179 |
-
def predict_pose(
|
180 |
-
self,
|
181 |
-
image: np.ndarray,
|
182 |
-
det_results: list[np.ndarray],
|
183 |
-
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
184 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
185 |
-
model = self.models[self.model_name]
|
186 |
-
person_results = process_mmdet_results(det_results, 1)
|
187 |
-
out, _ = inference_top_down_pose_model(model,
|
188 |
-
image,
|
189 |
-
person_results=person_results,
|
190 |
-
bbox_thr=box_score_threshold,
|
191 |
-
format='xyxy')
|
192 |
-
return out
|
193 |
-
|
194 |
-
def visualize_pose_results(self,
|
195 |
-
image: np.ndarray,
|
196 |
-
pose_results: list[np.ndarray],
|
197 |
-
kpt_score_threshold: float = 0.3,
|
198 |
-
vis_dot_radius: int = 4,
|
199 |
-
vis_line_thickness: int = 1) -> np.ndarray:
|
200 |
-
image = image[:, :, ::-1] # RGB -> BGR
|
201 |
-
model = self.models[self.model_name]
|
202 |
-
vis = vis_pose_result(model,
|
203 |
-
image,
|
204 |
-
pose_results,
|
205 |
-
kpt_score_thr=kpt_score_threshold,
|
206 |
-
radius=vis_dot_radius,
|
207 |
-
thickness=vis_line_thickness)
|
208 |
-
return vis[:, :, ::-1] # BGR -> RGB
|
209 |
-
|
210 |
-
|
211 |
def set_example_image(example: list) -> dict:
|
212 |
return gr.Image.update(value=example[0])
|
213 |
|
@@ -227,17 +47,8 @@ def main():
|
|
227 |
det_model = DetModel(device=args.device)
|
228 |
pose_model = PoseModel(device=args.device)
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
text-align: center;
|
233 |
-
}
|
234 |
-
'''
|
235 |
-
|
236 |
-
with gr.Blocks(theme=args.theme, css=css) as demo:
|
237 |
-
gr.Markdown('''<h1 id="title">ViTPose</h1>
|
238 |
-
|
239 |
-
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
240 |
-
)
|
241 |
|
242 |
with gr.Box():
|
243 |
gr.Markdown('## Step 1')
|
@@ -318,14 +129,10 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
318 |
with gr.Row():
|
319 |
redraw_pose_button = gr.Button(value='Redraw')
|
320 |
|
321 |
-
gr.Markdown(
|
322 |
-
'<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" alt="visitor badge"/></center>'
|
323 |
-
)
|
324 |
|
325 |
detector_name.change(fn=det_model.set_model_name,
|
326 |
-
inputs=
|
327 |
-
detector_name,
|
328 |
-
],
|
329 |
outputs=None)
|
330 |
detect_button.click(fn=det_model.detect_and_visualize,
|
331 |
inputs=[
|
@@ -342,14 +149,10 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
342 |
det_preds,
|
343 |
vis_det_score_threshold,
|
344 |
],
|
345 |
-
outputs=
|
346 |
-
detection_visualization,
|
347 |
-
])
|
348 |
|
349 |
pose_model_name.change(fn=pose_model.set_model_name,
|
350 |
-
inputs=
|
351 |
-
pose_model_name,
|
352 |
-
],
|
353 |
outputs=None)
|
354 |
predict_button.click(fn=pose_model.predict_pose_and_visualize,
|
355 |
inputs=[
|
@@ -372,17 +175,13 @@ This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](ht
|
|
372 |
vis_dot_radius,
|
373 |
vis_line_thickness,
|
374 |
],
|
375 |
-
outputs=
|
376 |
-
pose_visualization,
|
377 |
-
])
|
378 |
|
379 |
-
example_images.click(
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
input_image,
|
385 |
-
])
|
386 |
|
387 |
demo.launch(
|
388 |
enable_queue=args.enable_queue,
|
|
|
3 |
from __future__ import annotations
|
4 |
|
5 |
import argparse
|
|
|
6 |
import pathlib
|
|
|
|
|
7 |
import tarfile
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import gradio as gr
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
from model import DetModel, PoseModel
|
12 |
|
13 |
+
DESCRIPTION = '''# ViTPose
|
|
|
|
|
14 |
|
15 |
+
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).'''
|
16 |
+
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.vitpose" />'
|
17 |
|
18 |
|
19 |
def parse_args() -> argparse.Namespace:
|
|
|
28 |
return parser.parse_args()
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def set_example_image(example: list) -> dict:
|
32 |
return gr.Image.update(value=example[0])
|
33 |
|
|
|
47 |
det_model = DetModel(device=args.device)
|
48 |
pose_model = PoseModel(device=args.device)
|
49 |
|
50 |
+
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
51 |
+
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
with gr.Box():
|
54 |
gr.Markdown('## Step 1')
|
|
|
129 |
with gr.Row():
|
130 |
redraw_pose_button = gr.Button(value='Redraw')
|
131 |
|
132 |
+
gr.Markdown(FOOTER)
|
|
|
|
|
133 |
|
134 |
detector_name.change(fn=det_model.set_model_name,
|
135 |
+
inputs=detector_name,
|
|
|
|
|
136 |
outputs=None)
|
137 |
detect_button.click(fn=det_model.detect_and_visualize,
|
138 |
inputs=[
|
|
|
149 |
det_preds,
|
150 |
vis_det_score_threshold,
|
151 |
],
|
152 |
+
outputs=detection_visualization)
|
|
|
|
|
153 |
|
154 |
pose_model_name.change(fn=pose_model.set_model_name,
|
155 |
+
inputs=pose_model_name,
|
|
|
|
|
156 |
outputs=None)
|
157 |
predict_button.click(fn=pose_model.predict_pose_and_visualize,
|
158 |
inputs=[
|
|
|
175 |
vis_dot_radius,
|
176 |
vis_line_thickness,
|
177 |
],
|
178 |
+
outputs=pose_visualization)
|
|
|
|
|
179 |
|
180 |
+
example_images.click(
|
181 |
+
fn=set_example_image,
|
182 |
+
inputs=example_images,
|
183 |
+
outputs=input_image,
|
184 |
+
)
|
|
|
|
|
185 |
|
186 |
demo.launch(
|
187 |
enable_queue=args.enable_queue,
|
model.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
|
7 |
+
if os.getenv('SYSTEM') == 'spaces':
|
8 |
+
import mim
|
9 |
+
|
10 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
11 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
12 |
+
|
13 |
+
subprocess.call('pip uninstall -y opencv-python'.split())
|
14 |
+
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
15 |
+
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
16 |
+
|
17 |
+
import huggingface_hub
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
sys.path.insert(0, 'ViTPose/')
|
23 |
+
|
24 |
+
from mmdet.apis import inference_detector, init_detector
|
25 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
26 |
+
process_mmdet_results, vis_pose_result)
|
27 |
+
|
28 |
+
HF_TOKEN = os.environ['HF_TOKEN']
|
29 |
+
|
30 |
+
|
31 |
+
class DetModel:
|
32 |
+
def __init__(self, device: str | torch.device):
|
33 |
+
self.device = torch.device(device)
|
34 |
+
self.models = self._load_models()
|
35 |
+
self.model_name = 'YOLOX-l'
|
36 |
+
|
37 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
38 |
+
model_dict = {
|
39 |
+
'YOLOX-tiny': {
|
40 |
+
'config':
|
41 |
+
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
42 |
+
'model':
|
43 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
44 |
+
},
|
45 |
+
'YOLOX-s': {
|
46 |
+
'config':
|
47 |
+
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
48 |
+
'model':
|
49 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
50 |
+
},
|
51 |
+
'YOLOX-l': {
|
52 |
+
'config':
|
53 |
+
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
54 |
+
'model':
|
55 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
56 |
+
},
|
57 |
+
'YOLOX-x': {
|
58 |
+
'config':
|
59 |
+
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
60 |
+
'model':
|
61 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
62 |
+
},
|
63 |
+
}
|
64 |
+
models = {
|
65 |
+
key: init_detector(dic['config'], dic['model'], device=self.device)
|
66 |
+
for key, dic in model_dict.items()
|
67 |
+
}
|
68 |
+
return models
|
69 |
+
|
70 |
+
def set_model_name(self, name: str) -> None:
|
71 |
+
self.model_name = name
|
72 |
+
|
73 |
+
def detect_and_visualize(
|
74 |
+
self, image: np.ndarray,
|
75 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
76 |
+
out = self.detect(image)
|
77 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
78 |
+
return out, vis
|
79 |
+
|
80 |
+
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
81 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
82 |
+
model = self.models[self.model_name]
|
83 |
+
out = inference_detector(model, image)
|
84 |
+
return out
|
85 |
+
|
86 |
+
def visualize_detection_results(
|
87 |
+
self,
|
88 |
+
image: np.ndarray,
|
89 |
+
detection_results: list[np.ndarray],
|
90 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
91 |
+
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)]
|
92 |
+
|
93 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
94 |
+
model = self.models[self.model_name]
|
95 |
+
vis = model.show_result(image,
|
96 |
+
person_det,
|
97 |
+
score_thr=score_threshold,
|
98 |
+
bbox_color=None,
|
99 |
+
text_color=(200, 200, 200),
|
100 |
+
mask_color=None)
|
101 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
102 |
+
|
103 |
+
|
104 |
+
class PoseModel:
|
105 |
+
def __init__(self, device: str | torch.device):
|
106 |
+
self.device = torch.device(device)
|
107 |
+
self.models = self._load_models()
|
108 |
+
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
109 |
+
|
110 |
+
def _load_models(self) -> dict[str, nn.Module]:
|
111 |
+
model_dict = {
|
112 |
+
'ViTPose-B (single-task train)': {
|
113 |
+
'config':
|
114 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
115 |
+
'model': 'models/vitpose-b.pth',
|
116 |
+
},
|
117 |
+
'ViTPose-L (single-task train)': {
|
118 |
+
'config':
|
119 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
120 |
+
'model': 'models/vitpose-l.pth',
|
121 |
+
},
|
122 |
+
'ViTPose-B (multi-task train, COCO)': {
|
123 |
+
'config':
|
124 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
125 |
+
'model': 'models/vitpose-b-multi-coco.pth',
|
126 |
+
},
|
127 |
+
'ViTPose-L (multi-task train, COCO)': {
|
128 |
+
'config':
|
129 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
130 |
+
'model': 'models/vitpose-l-multi-coco.pth',
|
131 |
+
},
|
132 |
+
}
|
133 |
+
models = dict()
|
134 |
+
for key, dic in model_dict.items():
|
135 |
+
ckpt_path = huggingface_hub.hf_hub_download(
|
136 |
+
'hysts/ViTPose', dic['model'], use_auth_token=HF_TOKEN)
|
137 |
+
model = init_pose_model(dic['config'],
|
138 |
+
ckpt_path,
|
139 |
+
device=self.device)
|
140 |
+
models[key] = model
|
141 |
+
return models
|
142 |
+
|
143 |
+
def set_model_name(self, name: str) -> None:
|
144 |
+
self.model_name = name
|
145 |
+
|
146 |
+
def predict_pose_and_visualize(
|
147 |
+
self,
|
148 |
+
image: np.ndarray,
|
149 |
+
det_results: list[np.ndarray],
|
150 |
+
box_score_threshold: float,
|
151 |
+
kpt_score_threshold: float,
|
152 |
+
vis_dot_radius: int,
|
153 |
+
vis_line_thickness: int,
|
154 |
+
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
155 |
+
out = self.predict_pose(image, det_results, box_score_threshold)
|
156 |
+
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
157 |
+
vis_dot_radius, vis_line_thickness)
|
158 |
+
return out, vis
|
159 |
+
|
160 |
+
def predict_pose(
|
161 |
+
self,
|
162 |
+
image: np.ndarray,
|
163 |
+
det_results: list[np.ndarray],
|
164 |
+
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
165 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
166 |
+
model = self.models[self.model_name]
|
167 |
+
person_results = process_mmdet_results(det_results, 1)
|
168 |
+
out, _ = inference_top_down_pose_model(model,
|
169 |
+
image,
|
170 |
+
person_results=person_results,
|
171 |
+
bbox_thr=box_score_threshold,
|
172 |
+
format='xyxy')
|
173 |
+
return out
|
174 |
+
|
175 |
+
def visualize_pose_results(self,
|
176 |
+
image: np.ndarray,
|
177 |
+
pose_results: list[np.ndarray],
|
178 |
+
kpt_score_threshold: float = 0.3,
|
179 |
+
vis_dot_radius: int = 4,
|
180 |
+
vis_line_thickness: int = 1) -> np.ndarray:
|
181 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
182 |
+
model = self.models[self.model_name]
|
183 |
+
vis = vis_pose_result(model,
|
184 |
+
image,
|
185 |
+
pose_results,
|
186 |
+
kpt_score_thr=kpt_score_threshold,
|
187 |
+
radius=vis_dot_radius,
|
188 |
+
thickness=vis_line_thickness)
|
189 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
style.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
div#result {
|
5 |
+
max-width: 600px;
|
6 |
+
max-height: 600px;
|
7 |
+
}
|
8 |
+
img#visitor-badge {
|
9 |
+
display: block;
|
10 |
+
margin: auto;
|
11 |
+
}
|